链接:https://www.nowcoder.com/acm/contest/144/J
来源:牛客网
题目描述
skywalkert, the new legend of Beihang University ACM-ICPC Team, retired this year leaving a group of newbies again.
Rumor has it that he left a heritage when he left, and only the one who has at least 0.1% IQ(Intelligence Quotient) of his can obtain it.
To prove you have at least 0.1% IQ of skywalkert, you have to solve the following problem:
Given n positive integers, for all (i, j) where 1 ≤ i, j ≤ n and i ≠ j, output the maximum value among . means the Lowest Common Multiple.
输入描述:
The input starts with one line containing exactly one integer t which is the number of test cases. (1 ≤ t ≤ 50) For each test case, the first line contains four integers n, A, B, C. (2 ≤ n ≤ 107, A, B, C are randomly selected in unsigned 32 bits integer range)
The n integers are obtained by calling the following function n times, the i-th result of which is ai, and we ensure all ai > 0. Please notice that for each test case x, y and z should be reset before being called.
No more than 5 cases have n greater than 2 x 106.
输出描述:
For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the maximum lcm.
示例1
输入
2 2 1 2 3 5 3 4 8
输出
Case #1: 68516050958 Case #2: 5751374352923604426
题解:查询可知随机两个数之间互质的的几率很大,所以选取随机生成的前100个数找最大的最小公倍数就可以。(也有人用10个数过的);
tips:nth_element(),作用:将第n_thn_th 元素放到它该放的位置上,左边元素都小于它,右边元素都大于它.
nth_element(first, nth, last, compare);
求[first, last]这个区间中第n大小的元素,如果参数加入了compare函数,就按compare函数的方式比较;
#include<bits/stdc++.h>
using namespace std;
unsigned x,y,z;
unsigned long long a[10000000];
unsigned tang()//随机生成数的函数
{
unsigned t;
x^=x<<16;
x^=x>>5;
x^=x<<1;
t=x;
x=y;
y=z;
z=t^x^y;
return z;
}
int main()
{
int t,n;
cin>>t;
int sum=0;
while(t--)
{
unsigned long long ans=0;
scanf("%d %u %u %u",&n,&x,&y,&z);
for(int i=0; i<n; i++)
{
a[i]=1ull*tang();
}
int m=max(0,n-100);
nth_element(a,a+m,a+n);//排序m-th到n-th个数最大不过100
for(int j=m; j<n-1; j++)
{
for(int k=j+1; k<n; k++)
{
ans=max(ans,1ull*a[j]*a[k]/__gcd(a[j],a[k]));
}
}
cout<<"Case #"<<++sum<<": "<<ans<<endl;
}
}