题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3884
题意:求 222...modp 的值,多组询问。 p≤107 。
题解:
考虑欧拉定理,当
(a,p)=1
时,
aϕ(p)≡1(modp)
。
而由此可以很容易得出一个结论:
当
x≥ϕ(p)
时,有
有一种证明过程和扩展大步小步算法的消因子过程类似,不嫌麻烦可以参见
AekdyCoin
的文章
【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】
回到本题,若令
f(p)=222...modp
,则
f(1)=0
。
又由于是无穷的式子,
222...
的指数本来就是超过
ϕ(p)
的,所以我们可以改写成
因而得到了 f(p) 的递推式。
似乎这么计算是
O(p)
的,但是我们可以对
ϕ(ϕ(...ϕ(p)))
进行分析:
若
p
为偶数,则
若
p
为奇数,则
由此可知,
ϕ(ϕ(...ϕ(p)))
的计算经过
O(logp)
次的迭代就到了
1
,所以
出题人给出的解法也是 O(p√logp) 的,有兴趣的不妨去看一下。
代码:
#include <map>
#include <cstdio>
using namespace std;
map<int, int> f;
int pow(int x, int k, int p)
{
int ret = 1;
while(k)
{
if(k & 1)
ret = (long long)ret * x % p;
x = (long long)x * x % p;
k >>= 1;
}
return ret;
}
int phi(int x)
{
int ret = x;
for(int i = 2; i * i <= x; ++i)
if(x % i == 0)
{
ret -= ret / i;
while(x % i == 0)
x /= i;
}
if(x > 1)
ret -= ret / x;
return ret;
}
int F(int x)
{
if(f.count(x))
return f[x];
int p = phi(x);
return f[x] = pow(2, F(p) + p, x);
}
int main()
{
int t, n;
scanf("%d", &t);
f[1] = 0;
while(t--)
{
scanf("%d", &n);
printf("%d\n", F(n));
}
return 0;
}