并查集(究竟有几个祖先?)

目录

1,我们要怎么找祖先

2,我们要怎么把祖先相同的合在一起

3,例题

 思路很明显,把修过路的捆绑一起,一直按价格最低的路修,一直累计就好了

AC代码


‘并’意思是把祖先相同的合为一体,‘查’是当我并完后,我就能明天究竟谁与谁祖先相同了

通过爸爸找爸爸的爸爸,这种思想我们很容易联系到递归,那么我们可以通过一个递归函数来找爸爸

1,我们要怎么找祖先

我们先建立一个数组,fa[x],即fa[x]是x的爸爸,(祖先的爸爸是自己,fa[x]=x),然后一个递归函数,find(x),找x祖先,只要fa[x]!=x,(说明fa[x]只是个爸爸,但不是祖先,他也是某人的儿子)我们就一直递归,直到找到祖先

int find(int x) {
	if(fa[x]!=x)fa[x] = find(fa[x]);//爸爸不是祖先,继续找爸爸,当然,爸爸祖先要更新(因为前面可能已经换过祖先了)
	return fa[x]; //是祖先,直接返回
}

2,我们要怎么把祖先相同的合在一起

能找到祖先,剩下就很简单了,写一个unit函数,把a,b的祖先合一起(即fa[find(a)]=find(b),我们让本来是祖先的find(a)有了爸爸,即fa[find(a)]不再等于自己了,他的爸爸变成find(b)(b的祖先)

void unit(int a, int b) {
	fa[find(a)] = find(b);
}

3,例题

我们通过一道HDU的题来了解一下

 思路很明显,把修过路的捆绑一起,一直按价格最低的路修,一直累计就好了

AC代码

#define _CRT_SECURE_NO_WARNINGS 1
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 110;
int fa[N];
struct city {
	int a, b, p,now;  //a,b为城市,p为价格,now为当前道路是否修建

}arr[N * (N - 1) / 2];//注意,道路情况不是n条,是N(N-1)/2条,数组不要开小了

bool cmp(city x, city y) {  //建立sort排序根据谁的价格小来排序
	return x.p < y.p;
}

int find(int x) {
	if(fa[x]!=x)fa[x] = find(fa[x]);//爸爸不是祖先,继续找爸爸,当然,爸爸祖先要更新(因为前面可能已经换过祖先了)
	return fa[x]; //是祖先,直接返回
}

int unit(city x) {
	if (find(x.a) == find(x.b))return 0;  //祖先相同,说明已经有路把他们连在一起,不用浪费钱修路了
	else {
		fa[find(x.a)] = find(x.b);//不相同,我就修,然后合在一起,表示他们有修路连一起了
		return x.p;//返回修路的价格
	}
}

int main() {
	std::ios::sync_with_stdio(false);//这个是解绑cin,cout与stdin的同步,提高速度,不然这里直接用就被卡时间TLE了
	int n;
	while (cin >> n&&n) {
		for (int i = 1; i <= n; ++i)fa[i] = i;//初始自己就是自己的祖先
		for (int i = 1; i <= n * (n - 1) / 2; ++i) {//再次强调,/注意,道路情况不是n条,是N(N-1)/2条
			cin >> arr[i].a >> arr[i].b >> arr[i].p >> arr[i].now;
				if (arr[i].now == 1)arr[i].p = 0;//如果你有修过路,那么我不用再修,价格归为0,方便后面排序
		}
		sort(arr + 1, arr + 1 + n * (n - 1) / 2, cmp);//再次强调,/注意,道路情况不是n条,是N(N-1)/2条,排序也不是只排n条
		int ans = 0;//总价格
		for (int i = 1; i <= n * (n - 1) / 2; ++i)ans += unit(arr[i]);
		cout << ans << endl;
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值