目录
思路很明显,把修过路的捆绑一起,一直按价格最低的路修,一直累计就好了
‘并’意思是把祖先相同的合为一体,‘查’是当我并完后,我就能明天究竟谁与谁祖先相同了
通过爸爸找爸爸的爸爸,这种思想我们很容易联系到递归,那么我们可以通过一个递归函数来找爸爸
1,我们要怎么找祖先
我们先建立一个数组,fa[x],即fa[x]是x的爸爸,(祖先的爸爸是自己,fa[x]=x),然后一个递归函数,find(x),找x祖先,只要fa[x]!=x,(说明fa[x]只是个爸爸,但不是祖先,他也是某人的儿子)我们就一直递归,直到找到祖先
int find(int x) {
if(fa[x]!=x)fa[x] = find(fa[x]);//爸爸不是祖先,继续找爸爸,当然,爸爸祖先要更新(因为前面可能已经换过祖先了)
return fa[x]; //是祖先,直接返回
}
2,我们要怎么把祖先相同的合在一起
能找到祖先,剩下就很简单了,写一个unit函数,把a,b的祖先合一起(即fa[find(a)]=find(b),我们让本来是祖先的find(a)有了爸爸,即fa[find(a)]不再等于自己了,他的爸爸变成find(b)(b的祖先)
void unit(int a, int b) {
fa[find(a)] = find(b);
}
3,例题
我们通过一道HDU的题来了解一下
思路很明显,把修过路的捆绑一起,一直按价格最低的路修,一直累计就好了
AC代码
#define _CRT_SECURE_NO_WARNINGS 1
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 110;
int fa[N];
struct city {
int a, b, p,now; //a,b为城市,p为价格,now为当前道路是否修建
}arr[N * (N - 1) / 2];//注意,道路情况不是n条,是N(N-1)/2条,数组不要开小了
bool cmp(city x, city y) { //建立sort排序根据谁的价格小来排序
return x.p < y.p;
}
int find(int x) {
if(fa[x]!=x)fa[x] = find(fa[x]);//爸爸不是祖先,继续找爸爸,当然,爸爸祖先要更新(因为前面可能已经换过祖先了)
return fa[x]; //是祖先,直接返回
}
int unit(city x) {
if (find(x.a) == find(x.b))return 0; //祖先相同,说明已经有路把他们连在一起,不用浪费钱修路了
else {
fa[find(x.a)] = find(x.b);//不相同,我就修,然后合在一起,表示他们有修路连一起了
return x.p;//返回修路的价格
}
}
int main() {
std::ios::sync_with_stdio(false);//这个是解绑cin,cout与stdin的同步,提高速度,不然这里直接用就被卡时间TLE了
int n;
while (cin >> n&&n) {
for (int i = 1; i <= n; ++i)fa[i] = i;//初始自己就是自己的祖先
for (int i = 1; i <= n * (n - 1) / 2; ++i) {//再次强调,/注意,道路情况不是n条,是N(N-1)/2条
cin >> arr[i].a >> arr[i].b >> arr[i].p >> arr[i].now;
if (arr[i].now == 1)arr[i].p = 0;//如果你有修过路,那么我不用再修,价格归为0,方便后面排序
}
sort(arr + 1, arr + 1 + n * (n - 1) / 2, cmp);//再次强调,/注意,道路情况不是n条,是N(N-1)/2条,排序也不是只排n条
int ans = 0;//总价格
for (int i = 1; i <= n * (n - 1) / 2; ++i)ans += unit(arr[i]);
cout << ans << endl;
}
return 0;
}