打通tensorflow版Unet_v1代码

目录​​​​​​​

        知识积累:

        代码调试:

        构建Unet网络:

        1.Conv2D

        ModelCheckpoint

        model.fit()

        代码

        data.py

        unet.py

        运行情况

        最终结果(必还有优化的空间)


知识积累:

卷积、池化->CNN->FCN->Unet_WRStop的博客-CSDN博客_fcn

代码调试:

tensorflow版Unet(U-net-master)代码调试_WRStop的博客-CSDN博客

构建Unet网络:

model = self.get_unet()
  • encoder:5个子模块,每个模块有两个卷积层,每个模块之后有一个通过maxpool实现的下采样层。
  • decoder:4个子模块,每个模块有两个卷积层,每个模块之后跟着一个上卷积

1.Conv2D

        定义:

  

       [tensorflow] 卷积和池化中的padding操作带来的维度变化_ASR_THU的博客-CSDN博客

        Tensorflow 中 tf.keras.layers.Conv2D 中filter 参数的含义 - 简书

        filters:Conv2D继承自Conv类,所以filter参数也赋值到Conv类的filters参数里面。在上面Conv类的build方法里面可以看到,filters参数同input_channel参数连接到kernel_size后面。所以filters参数是kernel_shape四元组的最后一个元素。而kernel_shape元祖格式为(height,width,input_channel, output_channel)所以filter就是卷积操作后结果输出的通道数。相当于图像卷积后输出的图像通道数。

        kernerl-size:是卷积核的大小,如果为3的话,卷积核大小为(3*3)

        strides:步长

        activation:激活函数

        padding:

        变量x是一个2×3的矩阵,max pooling窗口为2×2,两个维度的步长strides=2 

        由于步长为2,当向右滑动两步之后,VALID方式发现余下的窗口不到2×2所以直接将第三列舍弃,而SAME方式不会把多出的一列丢弃,而是填充0,same可以保证2x2不影响原始信息。

valid  

same

ModelCheckpoint

 

model_checkpoint = ModelCheckpoint('unet.hdf5', monitor='loss',verbose=1, save_best_only=True)

         参考:ModelCheckpoint详解_you是mine的博客-CSDN博客_modelcheckpoint函数

        ModelCheckpoint该回调函数将在每个epoch后保存模型到filepath

        filename:字符串,保存模型的路径

        monitor:需要监视的值,通常为:val_acc 或 val_loss 或 acc 或 loss

        verbose:信息展示模式,0或1。为1表示输出epoch模型保存信息,默认为0表示不输出该信息,信息形如:        

         save_best_only:当设置为True时,将只保存在验证集上性能最好的模型

model.fit()

model.fit(imgs_train, imgs_mask_train, batch_size=4, epochs=10, verbose=1,validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])

        参考:model.fit() fit函数_a1111h的博客-CSDN博客_model.fit()

         batch_ size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。

        verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

        validation_ split: 0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意validation_ split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_ split, 否则可能会出现验证集样本不均匀。

        shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。

        callbacks: list, 其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数。

代码

data.py

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import numpy as np 
import os
import glob
import cv2
#from libtiff import TIFF

#之前所有地path应该都是\\,都改成了/

class dataProcess(object):

	def __init__(self, out_rows, out_cols, data_path = "data/train/image", label_path = "data/train/label", test_path = "data/test", npy_path = "npy_data", img_type = "tif"):

		"""
		
		"""

		self.out_rows = out_rows
		self.out_cols = out_cols
		self.data_path = data_path
		self.label_path = label_path
		self.img_type = img_type
		self.test_path = test_path
		self.npy_path = npy_path

    # 将data/train/image里面的图片加载进来并数字化存储到npy_data下
	def create_train_data(self):
		i = 0
		print('-'*30)
		print('Creating training images...')
		print('-'*30)
		# 返回所有匹配的文件路径列表,它只有一个参数pathname,定义了文件路径匹配规则,这里可以是绝对路径,也可以是相对路径。
		imgs = glob.glob(self.data_path+"/*."+self.img_type)
		# GitHub源代码的基础上改动:由于glob的图片读入并不是顺序的,所以加上sort函数,参考CSDN
		imgs.sort(key=lambda x: int(x.split('/')[3][:-4]))
		print(len(imgs))
		imgdatas = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8) # 创建ndarray对象
		imglabels = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8)
		for imgname in imgs:
			#print(imgname) # data/train/image/13.tif
			midname = imgname[imgname.rindex("/")+1:]
			#print(midname) # 13.tif
			img = load_img(self.data_path + "/" + midname,grayscale = True)
			#print(img)
			label = load_img(self.label_path + "/" + midname,grayscale = True)
			img = img_to_array(img) # 图片转为数组,img_to_array 转换前后类型都是一样的,唯一区别是转换前元素类型是整型,转换后元素类型是浮点型(和keras等机器学习框架相适应的图像类型)
			label = img_to_array(label)
			#img = cv2.imread(self.data_path + "/" + midname,cv2.IMREAD_GRAYSCALE)
			#label = cv2.imread(self.label_path + "/" + midname,cv2.IMREAD_GRAYSCALE)
			#img = np.array([img])
			#label = np.array([label])
			imgdatas[i] = img
			imglabels[i] = label
			if i % 100 == 0:
				print('Done: {0}/{1} images'.format(i, len(imgs)))
			i += 1
		print('loading done')
		np.save(self.npy_path + '/imgs_train.npy', imgdatas) # 存储到npy_data文件夹路径下
		print(imgdatas)
		np.save(self.npy_path + '/imgs_mask_train.npy', imglabels)
		print('Saving to .npy files done.')

	def create_test_data(self):
		i = 0
		print('-'*30)
		print('Creating test images...')
		print('-'*30)
		imgs = glob.glob(self.test_path+"/*."+self.img_type)
		imgs.sort(key=lambda x: int(x.split('/')[2][:-4]))
		print(len(imgs))
		imgdatas = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8)
		for imgname in imgs:
			midname = imgname[imgname.rindex("/")+1:]
			img = load_img(self.test_path + "/" + midname,grayscale = True)
			img = img_to_array(img)
			#img = cv2.imread(self.test_path + "/" + midname,cv2.IMREAD_GRAYSCALE)
			#img = np.array([img])
			imgdatas[i] = img
			i += 1
		print('loading done')
		np.save(self.npy_path + '/imgs_test.npy', imgdatas)
		print('Saving to imgs_test.npy files done.')

	def load_train_data(self):
		print('-'*30)
		print('load train images...')
		print('-'*30)
		# train
		imgs_train = np.load(self.npy_path+"/imgs_train.npy") # imgs_train = np.load(self.npy_path+"\\imgs_train.npy")
		# train的label
		imgs_mask_train = np.load(self.npy_path+"/imgs_mask_train.npy") # imgs_mask_train = np.load(self.npy_path+"\\imgs_mask_train.npy")
		imgs_train = imgs_train.astype('float32') #转换为float32
		imgs_mask_train = imgs_mask_train.astype('float32')
		# 二值化操作,0、255
		imgs_train /= 255
		#mean = imgs_train.mean(axis = 0)
		#imgs_train -= mean	
		imgs_mask_train /= 255
		imgs_mask_train[imgs_mask_train > 0.5] = 1
		imgs_mask_train[imgs_mask_train <= 0.5] = 0
		return imgs_train,imgs_mask_train

	def load_test_data(self):
		print('-'*30)
		print('load test images...')
		print('-'*30)
		imgs_test = np.load(self.npy_path+"/imgs_test.npy")
		imgs_test = imgs_test.astype('float32')
		imgs_test /= 255
		#mean = imgs_test.mean(axis = 0)
		#imgs_test -= mean	
		return imgs_test

if __name__ == "__main__":

	#aug = myAugmentation()
	#aug.Augmentation()
	#aug.splitMerge()
	#aug.splitTransform()
	mydata = dataProcess(512,512)
	mydata.create_train_data()
	mydata.create_test_data()
	#imgs_train,imgs_mask_train = mydata.load_train_data()
	#print imgs_train.shape,imgs_mask_train.shape

unet.py

import os 
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import numpy as np
import tensorflow
#之前所有的path应该都是\\,我给都改成了/

from keras.models import *
from keras.layers import Input, merge, Conv2D, MaxPooling2D, UpSampling2D, Dropout, Cropping2D
from keras.optimizer_v1 import Adam
from keras.optimizer_v2 import adam as adam_v2 # 更新为v2版的adam_v2
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
from keras.layers import merge
from data import *

#import data
class myUnet(object):

	def __init__(self, img_rows = 512, img_cols = 512):

		self.img_rows = img_rows
		self.img_cols = img_cols

	def load_data(self):

		mydata = dataProcess(self.img_rows, self.img_cols)
		imgs_train, imgs_mask_train = mydata.load_train_data()
		imgs_test = mydata.load_test_data()
		return imgs_train, imgs_mask_train, imgs_test

	def get_unet(self):

		inputs = Input((self.img_rows, self.img_cols,1))
		
		'''
		unet with crop(because padding = valid) 

		conv1 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(inputs)
		print "conv1 shape:",conv1.shape
		conv1 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv1)
		print "conv1 shape:",conv1.shape
		crop1 = Cropping2D(cropping=((90,90),(90,90)))(conv1)
		print "crop1 shape:",crop1.shape
		pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
		print "pool1 shape:",pool1.shape

		conv2 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool1)
		print "conv2 shape:",conv2.shape
		conv2 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv2)
		print "conv2 shape:",conv2.shape
		crop2 = Cropping2D(cropping=((41,41),(41,41)))(conv2)
		print "crop2 shape:",crop2.shape
		pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
		print "pool2 shape:",pool2.shape

		conv3 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool2)
		print "conv3 shape:",conv3.shape
		conv3 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv3)
		print "conv3 shape:",conv3.shape
		crop3 = Cropping2D(cropping=((16,17),(16,17)))(conv3)
		print "crop3 shape:",crop3.shape
		pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
		print "pool3 shape:",pool3.shape

		conv4 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool3)
		conv4 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv4)
		drop4 = Dropout(0.5)(conv4)
		crop4 = Cropping2D(cropping=((4,4),(4,4)))(drop4)
		pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

		conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool4)
		conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv5)
		drop5 = Dropout(0.5)(conv5)

		up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
		merge6 = merge([crop4,up6], mode = 'concat', concat_axis = 3)
		conv6 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge6)
		conv6 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv6)

		up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
		merge7 = merge([crop3,up7], mode = 'concat', concat_axis = 3)
		conv7 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge7)
		conv7 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv7)

		up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
		merge8 = merge([crop2,up8], mode = 'concat', concat_axis = 3)
		conv8 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge8)
		conv8 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv8)

		up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
		merge9 = merge([crop1,up9], mode = 'concat', concat_axis = 3)
		conv9 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge9)
		conv9 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv9)
		conv9 = Conv2D(2, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv9)
		'''

        # 构建卷积层。用于从输入的高维数组中提取特征。
        # filters:输出空间的维数;kernel_size:卷积核大小;strides=(1, 1)横向和纵向的步长;padding :valid表示不够卷积核大小的块,则丢弃; same表示不够卷积核大小的块就补0,所以输出和输入形状相同;activation:激活函数;kernel_initializer:卷积核的初始化
		conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
		print("conv1 shape:",conv1.shape)
		conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
		print("conv1 shape:",conv1.shape)
		pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
		print("pool1 shape:",pool1.shape)

		conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
		print("conv2 shape:",conv2.shape)
		conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
		print("conv2 shape:",conv2.shape)
		pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
		print("pool2 shape:",pool2.shape)

		conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
		print("conv3 shape:",conv3.shape)
		conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
		print("conv3 shape:",conv3.shape)
		pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
		print("pool3 shape:",pool3.shape)

		conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
		conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
		drop4 = Dropout(0.5)(conv4)
		pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

		conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
		conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
		drop5 = Dropout(0.5)(conv5)

		up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
		merge6 = merge.concatenate([drop4,up6], axis=3 ) # 参考CSDN改成了keras.layers.merge新版本的新用法
		conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
		conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

		up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
		merge7 = merge.concatenate([conv3,up7], axis = 3)
		conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
		conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

		up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
		merge8 = merge.concatenate([conv2,up8], axis = 3)
		conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
		conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

		up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
		merge9 = merge.concatenate([conv1,up9], axis = 3)
		conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
		conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
		conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
		conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)

		model = Model(inputs = inputs, outputs = conv10) #也是改为了新版本的keras中的语法

		model.compile(optimizer = adam_v2.Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) # 更新为v2版的adam_v2.Adam

		return model


	def train(self):

		print("loading data")
		imgs_train, imgs_mask_train, imgs_test = self.load_data()
		print("loading data done")
		# 搭建unet模型
		model = self.get_unet()
		print("got unet")

        # ModelCheckpoint该回调函数将在每个epoch后保存模型到filepath
		model_checkpoint = ModelCheckpoint('unet.hdf5', monitor='loss',verbose=1, save_best_only=True)
		print('Fitting model...')
		model.fit(imgs_train, imgs_mask_train, batch_size=4, epochs=10, verbose=1,validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])

		print('predict test data')
		imgs_mask_test = model.predict(imgs_test, batch_size=1, verbose=1)
		np.save('/Users/fengyuting/Documents/pycharm/CV/Unet/U-net-master/results/imgs_mask_test.npy', imgs_mask_test)

	def save_img(self):

		print("arrays to image")
		imgs = np.load('/Users/fengyuting/Documents/pycharm/CV/Unet/U-net-master/results/imgs_mask_test.npy')

		# 二值化
		# imgs[imgs > 0.5] = 1
		# imgs[imgs <= 0.5] = 0
		for i in range(imgs.shape[0]):
			img = imgs[i]
			img = array_to_img(img)
			img.save("/Users/fengyuting/Documents/pycharm/CV/Unet/U-net-master/results/results_jpg/%d.jpg"%(i))




if __name__ == '__main__':
	myunet = myUnet()
	myunet.train()
	myunet.save_img()

运行情况

 最终结果(必还有优化的空间)

  最最开始predict的一次的0.jpg (那时候还没有对test数据sort)

                                                                                                                      

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值