U-net及其TensorFlow的实现

本文详细介绍了U-net模型的结构,包括下采样和上采样的过程,并讨论了在TensorFlow中使用tf.nn.conv2d_transpose()进行上采样的细节。作者在实现过程中遇到并解决了关于copy and crop的问题,通过保持卷积层大小不变和添加batch_normalization,提升了模型效果。在ISBI Challenge 2012数据集上测试,取得了平均96.55%的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将介绍U-net模型,以及其tensorflow的实现,保存在Github

U-net 结构

u-net结构
U-net顾名思义,其结构是一个U型的网络
左侧为一个下采样过程,分4组卷积操作(蓝色箭头)进行。每组卷积操作后进行一次maxpool操作(红色箭头),将图片进一步缩小为原来的 1/2 1 / 2 。通过4组操作将 572×572×1 572 × 572 × 1 大小的输入图片,计算为 32×32×1024 32 × 32 × 1024 大小。
右侧的上采样过程。上采样过程使用的是4组反卷积(浅绿色箭头),TensorFlow使用的函数是tf.nn.conv2d_transpose(),每次上采样将图片扩展为原来的

评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值