命题
命题的定义
我们首先来说一下什么是命题,命题的定义是这样的:命题是一个陈述语句(即陈述事实的语句),它或真或假,但不能既真又假。
我们来举几个例子来理解命题:
- 几点了?
- 仔细读这个。
- x + 1 = 2
- 1 + 1 = 3
首先第一个1、2、3都不是命题,理由如下:
第一个语句并不是一个陈述句,第二个语句这是一个带有命令意味的祈使句,第三个语句是没有明确的真值,也就是我们不知道它是真还是假,也就是不真也不假。只有第四个语句是一个真命题,并且是一个假命题。
下面我们转而关注从已有命题中产生新命题的方法。
与 或 非 异或
与或非异或的定义不在赘述,对照真值表理解就可以。
逆命题 反命题 逆否命题
p
→
q
p \to q
p→q的逆命题是:
q
→
p
q \to p
q→p,可以理解为把这个箭头给“逆”过来了。
p
→
q
p \to q
p→q的否命题是:
¬
p
→
¬
q
\lnot p \to \lnot q
¬p→¬q,也就是每一个命题都被否定了。
p
→
q
p \to q
p→q的逆否命题是:
¬
q
→
¬
p
\lnot q \to \lnot p
¬q→¬p,逆否命题是对逆命题和否命题的结合。
其中逆否命题和原命题是一个等价关系。(这个后面会说为什么)
条件语句
定义
先给出定义:
令p和q为命题。条件语句
p
→
q
p \to q
p→q是命题“如果p,则q”。当p为真而q为假时,条件语句
p
→
q
p \to q
p→q为假,否则为真。在条件语句
p
→
q
p \to q
p→q中,p称为假设(前件、前提),q称为结论(后件)。
在理解条件语句的时候我们可以将其理解为一种“承诺”,举个例子:
如果我去了超市,我会给你买吃的。我们在这里将这句话理解为一个承诺,
- 我没去超市但是我仍然给你买了吃的,我并没有违反我的承诺,甚至说这是一种超出预期的表现,但归根结底我没有违反承诺。所以最后命题为真。
- 我没去超市我也没有买吃的,说到底我也没有违反承诺,因为我给你买吃的的前提是我去了超市,但是我现在没有去超市何谈买吃的。所以最后的命题为真。
- 我去了超市我买了吃的这是肯定没有违反承诺的,所以最后命题为真。
- 但是我去了超市缺没有买吃的,这很显然是违反承诺的,所以最后命题为假。
所以条件语句的真值表就为:
p | q | p → q p \to q p→q |
---|---|---|
F | T | T |
F | F | T |
T | T | T |
T | F | F |
在 p → q p \to q p→q这个条件语句中,我们称p是q的充分条件,q是p的必要条件,那么我们如何来充分理解这两个条件呢,为什么要这样去命名这两个条件,为什么是充分和必要这两个词语来命名而不是其他词语来命名?
如何理解充分条件和必要条件
- 先来说充分条件:
在词典中,充分的第一个详细解释是足够的意思。
借助这个解释,我们可以理解充分条件,充分条件就是在讲有我就足够了。对于 p → q p \to q p→q这个条件语句来说,命题p发生了,那么q就会发生,也就是说命题q的发生,有p就足够了,所以我们说p是q的充分条件
- 再来说必要条件:
说必要条件之前我们提一下逆否命题,对于 p → q p \to q p→q来说逆否命题的表达式为: ¬ q → ¬ p \lnot q \to \lnot p ¬q→¬p
用文字来描述这个条件语句的话就是没有q也就没有p,所以在p面前q就显得非常必要,所以我们说q是p的必要条件。
这样我们就很好的理解了充分条件和必要条件。
“ q q q除非 ¬ p \lnot p ¬p”和 p → q p \to q p→q表达的意思相同
理解这种逻辑语句的最好方式就是举一个例子:
我会打你除非你给我道歉。(稍微有点粗俗)
这里有两个命题,一个是命题q:我打你,另一个命题是p:你不给我道歉。”我会打你除非你给我道歉“这句话的意思就是你给我道歉了我就不会打你,也就是 ¬ p \lnot p ¬p事件发生了,那么 ¬ q \lnot q ¬q事件就会发生。换句话说就是p发生了q就会发生,这里就很明显了,p是q的充分条件。
等价
当两个复合命题总是具有相同的真值时,无论其命题变量的真值是什么,我们称它们是等价的。
所以我们就可以来证明一个命题和其逆否命题是等价的,因为其真值表无论在什么情况下都是相同的,所以我们说一个命题和其逆否命题是等价的。
双条件语句
定义
下面给出双条件语句的定义:
令p和q为命题。双条件语句
p
⟺
q
p \iff q
p⟺q是命题“p当且仅当q”。当p和q有同样的真值时,双条件语句为真,否则为假。双条件语句也成为双向蕴含。
下面是它的真值表:
p | q | p ⟺ q p \iff q p⟺q |
---|---|---|
T | T | T |
F | F | T |
T | F | F |
F | T | F |
逻辑运算符的优先级
运算符 | 优先级 |
---|---|
¬ \lnot ¬ | 1 |
∧ \land ∧ | 2 |
∨ \lor ∨ | 3 |
→ \to → | 4 |
⟺ \iff ⟺ | 5 |
个人认为这一部分的学习应该在理解充分条件,必要条件以及条件语句上。再加以联系就能掌握这一方面的知识了。