离散数学学习笔记之命题逻辑

命题

命题的定义

我们首先来说一下什么是命题,命题的定义是这样的:命题是一个陈述语句(即陈述事实的语句),它或真或假,但不能既真又假。

我们来举几个例子来理解命题:

  1. 几点了?
  2. 仔细读这个。
  3. x + 1 = 2
  4. 1 + 1 = 3

首先第一个1、2、3都不是命题,理由如下:
第一个语句并不是一个陈述句,第二个语句这是一个带有命令意味的祈使句,第三个语句是没有明确的真值,也就是我们不知道它是真还是假,也就是不真也不假。只有第四个语句是一个真命题,并且是一个假命题。

下面我们转而关注从已有命题中产生新命题的方法。

与 或 非 异或

与或非异或的定义不在赘述,对照真值表理解就可以。

逆命题 反命题 逆否命题

p → q p \to q pq的逆命题是: q → p q \to p qp,可以理解为把这个箭头给“逆”过来了。
p → q p \to q pq的否命题是: ¬ p → ¬ q \lnot p \to \lnot q ¬p¬q,也就是每一个命题都被否定了。
p → q p \to q pq的逆否命题是: ¬ q → ¬ p \lnot q \to \lnot p ¬q¬p,逆否命题是对逆命题和否命题的结合。

其中逆否命题和原命题是一个等价关系。(这个后面会说为什么)

条件语句

定义

先给出定义:
令p和q为命题。条件语句 p → q p \to q pq是命题“如果p,则q”。当p为真而q为假时,条件语句 p → q p \to q pq为假,否则为真。在条件语句 p → q p \to q pq中,p称为假设(前件、前提),q称为结论(后件)。

在理解条件语句的时候我们可以将其理解为一种“承诺”,举个例子:
如果我去了超市,我会给你买吃的。我们在这里将这句话理解为一个承诺,

  1. 我没去超市但是我仍然给你买了吃的,我并没有违反我的承诺,甚至说这是一种超出预期的表现,但归根结底我没有违反承诺。所以最后命题为真。
  2. 我没去超市我也没有买吃的,说到底我也没有违反承诺,因为我给你买吃的的前提是我去了超市,但是我现在没有去超市何谈买吃的。所以最后的命题为真。
  3. 我去了超市我买了吃的这是肯定没有违反承诺的,所以最后命题为真。
  4. 但是我去了超市缺没有买吃的,这很显然是违反承诺的,所以最后命题为假。

所以条件语句的真值表就为:

pq p → q p \to q pq
FTT
FFT
TTT
TFF

p → q p \to q pq这个条件语句中,我们称p是q的充分条件,q是p的必要条件,那么我们如何来充分理解这两个条件呢,为什么要这样去命名这两个条件,为什么是充分和必要这两个词语来命名而不是其他词语来命名?

如何理解充分条件和必要条件

  • 先来说充分条件:

在词典中,充分的第一个详细解释是足够的意思。
在这里插入图片描述

借助这个解释,我们可以理解充分条件,充分条件就是在讲有我就足够了。对于 p → q p \to q pq这个条件语句来说,命题p发生了,那么q就会发生,也就是说命题q的发生,有p就足够了,所以我们说p是q的充分条件

  • 再来说必要条件:
    说必要条件之前我们提一下逆否命题,对于 p → q p \to q pq来说逆否命题的表达式为: ¬ q → ¬ p \lnot q \to \lnot p ¬q¬p
    用文字来描述这个条件语句的话就是没有q也就没有p,所以在p面前q就显得非常必要,所以我们说q是p的必要条件。

这样我们就很好的理解了充分条件和必要条件。

q q q除非 ¬ p \lnot p ¬p”和 p → q p \to q pq表达的意思相同

理解这种逻辑语句的最好方式就是举一个例子:
我会打你除非你给我道歉。(稍微有点粗俗)

这里有两个命题,一个是命题q:我打你,另一个命题是p:你不给我道歉。”我会打你除非你给我道歉“这句话的意思就是你给我道歉了我就不会打你,也就是 ¬ p \lnot p ¬p事件发生了,那么 ¬ q \lnot q ¬q事件就会发生。换句话说就是p发生了q就会发生,这里就很明显了,p是q的充分条件。

等价

当两个复合命题总是具有相同的真值时,无论其命题变量的真值是什么,我们称它们是等价的

所以我们就可以来证明一个命题和其逆否命题是等价的,因为其真值表无论在什么情况下都是相同的,所以我们说一个命题和其逆否命题是等价的。

双条件语句

定义

下面给出双条件语句的定义:
令p和q为命题。双条件语句 p    ⟺    q p \iff q pq是命题“p当且仅当q”。当p和q有同样的真值时,双条件语句为真,否则为假。双条件语句也成为双向蕴含。

下面是它的真值表:

pq p    ⟺    q p \iff q pq
TTT
FFT
TFF
FTF

逻辑运算符的优先级

运算符优先级
¬ \lnot ¬1
∧ \land 2
∨ \lor 3
→ \to 4
   ⟺    \iff 5

个人认为这一部分的学习应该在理解充分条件,必要条件以及条件语句上。再加以联系就能掌握这一方面的知识了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值