第一次配置使用GPU跑机器学习-遇到的坑

本文记录了配置使用GPU进行机器学习的过程,包括Python3.8、CUDA10.2和适配的cudnn版本。在配置中遇到的cudart64_101.dll缺失问题及其解决办法。此外,还提到成功调用GPU的验证步骤,以及在运行时可能出现的由于显存不足导致的错误,提示需要限制GPU显存使用比例。
摘要由CSDN通过智能技术生成

我的版本配置:
*Python3.8
*CUDA10.2
**cudnn:只要是适合CUDA10.2的版本都可以(但这里有个小问题,有些版本会出现not opened dynamic library cudart64_101.dll,就是找不到文件,有些是101,有些是102,解决办法:下载对应的cudart64_101.dll添加到文件夹下即可,可能不会马上起作用,这时就需要重启电脑了)
*tensorflow2.3.0
*tensorflow-gpu2.3.0

1、首先电脑要支持GPU(英伟达);
2、看一下显卡的CUDA版本号,然后下载对应的cuda(需要安装)和cudnn,将cudnn中的文件复制到cuda对应文件夹下;
3、下面是简单一段查看是否成功调用GPU

import tensorflow as tf
import os
from tensorflow.python.client import device_lib

print(devic
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值