实验9 基本统计分析(二)
实验目的:通过综合案例,使学生掌握基本统计分析的各种指标的。掌握统计分析结果的可视化方法。
实验内容:
1 背景介绍
Consolidated食品公司在新墨西哥州、亚利桑那州和加利福尼亚州经营连锁超市。它举办了一个促销活动,宣传本公司新的信用卡政策,以及顾客在购物付款时除了使用现金和个人支票外,还能够使用诸如VISA卡和Mater卡这样的信用卡。新政策正在试验的基础上实行,公司希望信用卡支付方式能够鼓励顾客多消费。
在新政策实行一个月以后,工作人员选择一周时间内的100位顾客作为随机样本,搜集了每位顾客的支付方式和消费金额数据,全部数据在Consolid.csv文件中
2 问题讨论
a) 计算支付方式的频数和相对频率。画出支付方式的相对频率的饼图。
> data<-read.csv("E:/R语言/作业/Consolid.csv")
> tab<-table(data$支付方式)
> tab2<-tab/sum(tab)
> name<-names(tab)
> lab<-paste(name,tab2*100,"%",sep = "")
> pie(tab,labels = lab,main = "支付方式饼图")
输出结果为:
b) 计算每种支付方式下消费金额的频数和相对频率的分布。画出支付方式的相对频率的饼图。
> a<-sum(data$消费金额[data$支付方式=="现金"])
> b<-sum(data$消费金额[data$支付方式=="信用卡"])
> c<-sum(data$消费金额[data$支付方式=="支票"])
> value<-c(a,b,c)
> lab3<-paste(name,round(value/sum(value)*100,2),"%",sep = "")
> pie(value,labels = lab3,main = "支付方式相对频率饼图")
c) 画出每种支付方式下消费金额的直方图。
现金消费方式直方图
> d<-data$消费金额[data$支付方式=="现金"]
> hist(d,xlab = "现金消费金额",ylab="Frequency",main="现金消费方式直方图")
信用卡消费方式直方图
> e<-data$消费金额[data$支付方式=="信用卡"]
> hist(e,xlab = "信用卡消费金额",ylab="Frequency",main="信用卡消费方式直方图")
支票消费方式直方图
> f<-data$消费金额[data$支付方式=="支票"]
> hist(f,xlab = "支票消费金额",ylab="Frequency",main="支票消费方式直方图")
d)计算每种支付方式数据的集中趋势和离散程度。
使用summary函数得到最小值、下四分位点、中位数、平均值、上四分位点、最大值,利用这些值并计算出极差和四分位差
计算极差
支付方式 | 平均值 | 最小值 | 下四分位数 | 中位数 | 上四分位数 | 最大值 | 标准差 | 极差 | 四分位差 |
---|---|---|---|---|---|---|---|---|---|
现金 | 8.840 | 1.090 | 4.832 | 7.405 | 12.8335 | 20.0480 | 5.2978 | 19.39 | 8.003 |
信用卡 | 40.88 | 14.14 | 2 7.10 | 45.33 | 52.56 | 69.77 | 14.87382 | 55.33 | 25.46 |
支票 | 42.73 | 2.67 | 33.94 | 41.34 | 53.36 | 78.16 | 15.62186 | 75.49 | 19.42 |
e)画出三种支付方式数据的箱线图。
boxplot(d,e,f,ylab="值",xlab="支付方式",col=c("red","green","blue"))
3.结论
结论1:支票和现金的使用频率最高且相差不大,信用卡使用则较少,支付金额最高的是支票,其次是信用卡,最低的是现金。
结论2:支票和信用卡的稳定性比较小,现金则比较稳定,差别不大。
综上:可以得出使用支票和信用卡的人数较多,使用现金的人数较少,使用支票和信用卡的消费金额也比使用现金的消费金额多。