1.
dst = cv.GaussianBlur(src, (5, 5), 0)
可用于去噪
#cv中有高斯模糊的API可以直接调用,cv.GaussianBlur() ,如果(5, 5)为(0,0),会由sigma反向去算(0,0);如果前面的(0,0)不为0,后面sigma就没有作用
2.
contours, heriachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
#OpenCV 新版调用,返回两个参数: contours, hierarchy , OpenCV旧版,返回三个参数: im2, contours, hierarchy
#cv.RETR_EXTERN只找外层的边缘,,cv.RETR_TREE可以找出所有轮廓
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
将灰度图像转换成二值图像的时候使用cv.THRESH_BINARY | cv.THRESH_OTSU得出的是白底黑色图像
使用cv.THRESH_BINARY | cv.THRESH_OTSU得出的是黑底白色图像
threshold(src, thresh, maxval, type, dst=None) 参数介绍:src原图片,thresh阈值,maxval图像中最大值,
type:
0: THRESH_BINARY 当前点值大于阈值时,取Maxval,否则设置为0
1: THRESH_BINARY_INV 当前点值大于阈值时,设置为0,否则设置为Maxval
2: THRESH_TRUNC 当前点值大于阈值时,设置为阈值,否则不改变
3: THRESH_TOZERO 当前点值大于阈值时,不改变,否则设置为0
4: THRESH_TOZERO_INV 当前点值大于阈值时,设置为0,否则不改变
5:THRESH_OTSU是提取图像最佳阈值算法。该方法在类间方差最大的情况下是最佳的,就图像的灰度值而言,OTSU给出最好的类间分离的阈值。
3.
cv2.drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None, maxLevel=None, offset=None)
第一个参数是指明在哪幅图像上绘制轮廓;image为三通道才能显示轮廓
第二个参数是轮廓本身,在Python中是一个list;
第三个参数指定绘制轮廓list中的哪条轮廓。
第四 后面的参数很简单。其中thickness表明轮廓线的宽度,一般为0,如果是-1(cv2.FILLED),则为填充模式。
例: cv.drawContours(image, contours, i, (0, 0, 255), 0)
#用于检测图像二值化后的边缘轮廓
4.
cv2.getStructuringElement()
第一个参数表示核的形状。可以选择三种
矩形:MORPH_RECT
交叉形:MORPH_CROSS
椭圆形:MORPH_ELLIPSE
第二个参数表示核的尺寸
例:十字型的结构 element = cv2.getStructuringElement(cv2.MORPH_CROSS,(5,5))
得出的是array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=uint8)的模板
5 * 5的矩阵 cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
得出array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]], dtype=uint8)的模板
椭圆结构 cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
得到array([[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0]], dtype=uint8)的模板
也可以用numpy来生成自己需要的结构化元素 kernel = np.ones((5,5),np.uint8)
得到array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]], dtype=uint8)的核
6、用matplotlib显示图片
调用 matplotlib进行图片展示时,需要注意调整图片的通道顺序,因为opencv读取图片的通道顺序是BGR,而matplotlib是RGB,即在调用plt.imshow之前将image的通道调整为RGB即可