【频繁模式挖掘】FP-Tree算法(附Python实现)

一、实验内容简介

该实验主要使用频繁模式和关联规则进行数据挖掘,在已经使用过Apriori算法挖掘频繁模式后,这次使用FP-tree算法来编写和设计程序,依然使用不同规模的数据集来检验效果,最后分析和探讨实验结果,看其是否达到了理想的效果。本实验依然使用Python语言编写。

二、算法说明

首先简单介绍频繁模式关联规则

  • 频繁模式一般是指频繁地出现在数据集中的模式。

  • 关联规则是形如X→Y的蕴涵表达式,其中X和Y是不相交的项集,即X∩Y=∅。关联规则的强度可以用它的支持度(support)和置信度(confidence)来度量。计算公式如下:

  • 支持度:support(A=>B)=P(A∪B),表示A和B同时出现的概率。

  • 置信度:confidence(A=>B)=support(A∪B)/support(A),表示A和B同时出现的概率占A出现概率的比值。

  • 强关联规则是指达到了最小支持度和最小置信度的关联规则。

然后再介绍FP-Tree算法

2000年,Han Jiawei等人提出了基于频繁模式树(Frequent Pattern Tree, FP—Tree)的发现频繁模式的算法FP-Growth。其思想是构造一棵FP-Tree,把数据集中的数据映射到树上,再根据这棵FP-Tree找出所有频繁项集。

FP-Growth算法是指,通过两次扫描事务数据集,把每个事务所包含的频繁项目按其支持度降序压缩存储到FP-Tree中。在以后发现频繁模式的过程中,不需要再扫描事务数据集,而仅在FP-Tree中进行查找即可。通过递归调用FP-Growth的方法可直接产生频繁模式,因此在整个发现过程中也不需产生候选模式。由于只对数据集扫描两次,因此FP-Growth算法克服了Apriori算法中存在的问题,在执行效率上也明显好于Apriori算法。

image-20240407103431324

上图为FP-Tree示意图,展示了该数据结构的构成方式。

三、算法分析与设计

了解完算法的基本原理后,现在开始真正实现该算法。首先需要读取最小支持度,读取数据集。这里的数据集可大可小,我用Python中的字典来表示数据

这里的数据存储格式与之前写Apriori算法时一样,使用字典来存储。然后由用户来输入支持度和置信度(因为这次还要挖掘关联规则,所以增加了置信度输入)。

作为FP-Tree的基础,首先构建树节点。一个节点有四个基本属性,分别节点名称、出现次数、双亲节点和孩子节点。因为这里不是二叉树,树的孩子节点个数不确定,因此用字典来存储,大小可控。

class Node:
    def __init__(self, value, parent, count=0):
        self.value = value
        self.parent = parent
        self.count = count
        self.children = {}

    def addChild(self, child):
        self.children.update(child)
    def __init__(self, value, parent, count=0):

前置准备完成后,开始实现FP-Tree算法。FP-Tree算法可大致分为构建项头表、构建FP-Tree、利用条件模式基挖掘频繁模式和关联规则几步。把这几步集成到一个类中,这样避免了大量函数传参操作,思路更清晰。

首先构建项头表,先扫描一遍数据集挖掘频繁1项集,挖掘出来的数据按支持度降序排列,并按此顺序重新排列原数据集的数据,对于不符合要求的数据直接删除。

    def first_scan(self):
        """
        生成项头表,整理数据
        """
        Dict = dict()
        for i in self.data.values():
            for j in i:
                if j not in Dict.keys():
                    Dict.update({j: 1})
                else:
                    Dict[j] += 1
        self.first_list = list(Dict.items())
        self.first_list.sort(key=lambda l: l[1], reverse=True)
        for i in range(len(self.first_list) - 1, 0, -1):
            if self.first_list[i][1] < self.support * len(self.data):
                continue
            else:
                rubbish = [self.first_list[j][0] for j in range(i + 1, len(self.first_list))]
                self.first_list = self.first_list[:i + 1]
                break

        # 将原来的数据重新按支持度排序并剔除非频繁1项集
        sort_refer = [i[0] for i in self.first_list]
        for i in self.data.values():
            for j in i:
                if j in rubbish:
                    i.remove(j)
            i.sort(key=lambda l: sort_refer.index(l))

        # 添加频繁1项集
        self.pinfan.extend([list(i) for i in self.first_list])

        # 整理项头表
        self.value_list = [i[0] for i in self.first_list]
        temp = {}
        for i in self.first_list:
            temp.update({i[0]: []})
        self.first_list = temp

然后构建FP-Tree。这里的过程就比较复杂了,简要说明步骤。第二次遍历数据集,从上往下构建分支,每次若遇到之前没出现的节点,就新建一个新节点,同时更新FP-Tree和项头表,若遇到之前已经出现的节点,则该节点的次数加一。特殊的根节点不需要存储任何数据,只需要存储孩子节点。

    def first_scan(self):
        """
        生成项头表,整理数据
        """
        Dict = dict()
        for i in self.data.values():
            for j in i:
                if j not in Dict.keys():
                    Dict.update({j: 1})
                else:
                    Dict[j] += 1
        self.first_list = list(Dict.items())
        self.first_list.sort(key=lambda l: l[1], reverse=True)
        for i in range(len(self.first_list) - 1, 0, -1):
            if self.first_list[i][1] < self.support * len(self.data):
                continue
            else:
                rubbish = [self.first_list[j][0] for j in range(i + 1, len(self.first_list))]
                self.first_list = self.first_list[:i + 1]
                break

        # 将原来的数据重新按支持度排序并剔除非频繁1项集
        sort_refer = [i[0] for i in self.first_list]
        for i in self.data.values():
            for j in i:
                if j in rubbish:
                    i.remove(j)
            i.sort(key=lambda l: sort_refer.index(l))

        # 添加频繁1项集
        self.pinfan.extend([list(i) for i in self.first_list])

        # 整理项头表
        self.value_list = [i[0] for i in self.first_list]
        temp = {}
        for i in self.first_list:
            temp.update({i[0]: []})
        self.first_list = temp

然后基于FP-Tree同时挖掘频繁模式和关联规则。利用项头表,从支持度低的元素到支持度高的元素,找到该元素在FP-Tree的所有位置,然后自底向上读取其所有祖先节点(除了根节点),同时把出现的次数都改为该元素所对应节点的次数。挖掘出结果后,先剔除掉不满足支持度要求的项,再通过两两组合挖掘出频繁2项集,然后递归挖掘出频繁多项集。同时两两组合算出条件概率与置信度比较,挖掘出1对1的关联规则。

这里涉及到的操作最为复杂,代码量也最大,分了三个方法来实现。

# 详见附录
def find(self):
def cal(self, Dict: dict, delete=False, length=1):
def rules(self, Dict: dict):

四、测试结果

写完代码后,就又到了测试环节。分别测试正确性和性能。在测试性能的时候也会与Apriori算法做比较,以更好地感受到FP-Tree算法的高效性。

首先验证正确性。我使用了教材上的数据集来验证。

img

先给定0.5的支持度和0.75的置信度:

img

经过验证是正确的,再给定0.2的支持度和0.5的置信度:

img

可以看到输出结果大大增加,经过验证也是正确的。

接下来就要扩大数据集的容量了,这样才能分析算法的性能。这里再次使用随机变量来模拟大量的数据:

img

在这里,arr和data2都可以修改,arr可以修改其中的元素来改变权重,data2可以修改数量,这里统一使用0.5作为支持度,0.75作为置信度。

首先用100000的数据来测试:

img

可以看到,一共花了0.288秒。相比其他条件相同下的Apriori算法是1.7秒。

然后把数据量变为1000000来试试:

img

一共花了2.845秒,相比同期Apriori算法一共花了15.58秒。

然后把数据量变为10000000来试试:

img

一共花了28.054秒,相比同期Apriori算法一共花了171.1秒。

最后再把数据量变为一亿,下图是最终结果。

img

差不多跑了8分钟,同期Apriori算法半个小时也没跑出来。可以看出,两个算法所耗费的时间都随时间呈线性增长,但FP-Tree算法显然效率比Apriori算法高得多。

五、分析与探讨

测试完算法后,来分析它的性能,思考FP-Tree算法的优势和缺陷。与Apriori算法相比,FP-Tree算法改进了Apriori算法的I/O瓶颈,巧妙的利用了树结构。Apriori的核心思路是用两个长度为l的频繁项集去构建长度为l+1的频繁项集,而FP-growth则稍有不同。它是将一个长度为l的频繁项集作为前提,筛选出包含这个频繁项集的数据集。用这个数据集构建新的FP-tree,从这个FP-tree当中寻找新的频繁项。如果能找到,那么说明它可以和长度为l的频繁项集构成长度为l+1的频繁项集。然后,我们就重复这个过程。

FP-Tree算法无论从复杂度还是实现难度还是具体技术点来看都比Apriori算法更复杂,但复杂度提高此带来的好处则是更高的效率和更好的性能。二者均为频繁模式挖掘的经典算法,都有必要学习和掌握,期待未来还能不断开发出挖掘频繁模式更加高效的算法。

附录:源代码

# 使用FP-tree实现频繁模式和关联规则挖掘
import itertools
import random
from time import time


# 构建树的节点
class Node:
    def __init__(self, value, parent, count=0):
        self.value = value
        self.parent = parent
        self.count = count
        self.children = {}

    def addChild(self, child):
        self.children.update(child)


# 构建FP-tree
class FP_tree:
    def __init__(self, data, support, confidence):
        self.data = data
        self.first_list = []
        self.value_list = []
        self.support = support
        self.confidence = confidence
        self.tree = None
        self.pinfan = []
        self.rule = []

    def first_scan(self):
        """
        生成项头表,整理数据
        """
        Dict = dict()
        for i in self.data.values():
            for j in i:
                if j not in Dict.keys():
                    Dict.update({j: 1})
                else:
                    Dict[j] += 1
        self.first_list = list(Dict.items())
        self.first_list.sort(key=lambda l: l[1], reverse=True)
        for i in range(len(self.first_list) - 1, 0, -1):
            if self.first_list[i][1] < self.support * len(self.data):
                continue
            else:
                rubbish = [self.first_list[j][0] for j in range(i + 1, len(self.first_list))]
                self.first_list = self.first_list[:i + 1]
                break

        # 将原来的数据重新按支持度排序并剔除非频繁1项集
        sort_refer = [i[0] for i in self.first_list]
        for i in self.data.values():
            for j in i:
                if j in rubbish:
                    i.remove(j)
            i.sort(key=lambda l: sort_refer.index(l))

        # 添加频繁1项集
        self.pinfan.extend([list(i) for i in self.first_list])

        # 整理项头表
        self.value_list = [i[0] for i in self.first_list]
        temp = {}
        for i in self.first_list:
            temp.update({i[0]: []})
        self.first_list = temp

    def build_tree(self):
        """
        建立FP-tree
        :return:fp-tree
        """
        root = Node('root', None)
        parent = root
        for i in self.data.values():
            for j in i:
                # 更新树和项头表
                head = self.first_list
                if j not in parent.children.keys():
                    node = Node(j, parent, 1)
                    temp = {j: node}
                    parent.addChild(temp)
                    head[j].append(node)
                else:
                    parent.children[j].count += 1
                parent = parent.children[j]
            parent = root
        self.tree = root

    def find(self):
        """
        利用建立好的树挖掘频繁模式
        """
        for i in self.value_list[::-1]:
            i_dict = {}
            for j in self.first_list[i]:
                k = j
                count = j.count
                while k != None:
                    if k.value not in i_dict.keys():
                        i_dict[k.value] = count
                    else:
                        i_dict[k.value] += count
                    k = k.parent
            del i_dict['root']
            self.cal(i_dict, True)

    def cal(self, Dict: dict, delete=False, length=1):
        if delete:
            # 预处理,删去支持度低的项
            d = Dict.copy()
            for i, j in d.items():
                if j < self.support * len(self.data):
                    del Dict[i]
        if length == 1:
            self.rules(Dict)
        # 递归挖掘频繁模式
        if length <= len(Dict):
            l = list(Dict.keys())
            pinfan = [l[0], Dict[l[0]]]
            del l[0]
            result = itertools.combinations(l, length)
            for i in result:
                p = pinfan.copy()
                for j in i:
                    p.insert(-1, j)
                    if Dict[j] < p[-1]:
                        p[-1] = Dict[j]
                p[0:-1] = p[-2::-1]
                self.pinfan.append(p)
            self.cal(Dict, length=length + 1)

    def rules(self, Dict: dict):
        """
        只生成1对1的关联规则
        :param Dict:数据源
        """
        if len(Dict) > 1:
            l = list(Dict.keys())
            for i in l[1:]:
                if min(Dict[l[0]], Dict[i]) / Dict[l[0]] > self.confidence:
                    self.rule.append(f"{l[0]}=>{i}")

    def __str__(self):
        """
        输出频繁模式
        :return: 所有的频繁模式
        """
        print("1对1的关联规则:" + str(self.rule))
        self.pinfan.sort(key=lambda l: (len(l), l[-1]), reverse=True)
        return "所有的频繁模式:" + str(self.pinfan)


if __name__ == '__main__':
    data = {1: ['牛奶', '鸡蛋', '面包', '薯片'],
            2: ['鸡蛋', '爆米花', '薯片', '啤酒'],
            3: ['牛奶', '面包', '啤酒'],
            4: ['牛奶', '鸡蛋', '面包', '爆米花', '薯片', '啤酒'],
            5: ['鸡蛋', '面包', '薯片'],
            6: ['鸡蛋', '面包', '啤酒'],
            7: ['牛奶', '面包', '薯片'],
            8: ['牛奶', '鸡蛋', '面包', '黄油', '薯片'],
            9: ['牛奶', '鸡蛋', '黄油', '薯片'],
            10: ['鸡蛋', '薯片']}
    arr = ['牛奶', '面包', '鸡蛋', '馒头', '包子', '饼干']
    support = float(input('请输入最小支持度:'))
    confidence = float(input('请输入最小置信度:'))
    data2 = {i: [random.choice(arr) for j in range(10)] for i in range(100000)}
    begin = time()
    f = FP_tree(data2, support, confidence)
    f.first_scan()
    f.build_tree()
    f.find()
    print(f)
    print("总花费时间为%.3f秒" % (time() - begin))
  • 39
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: FP-Tree算法是一种高效的频繁项集挖掘算法,适用于大数据集。它通过构建FP-Tree来进行频繁项集挖掘FP-Tree是一种特殊的结构,由项和链接组成。 在Python中,可以使用第三方库pyfpgrowth来实现FP-Tree算法。使用方法如下: 1. 安装pyfpgrowth库:pip install pyfpgrowth 2. 导入库:from pyfpgrowth import find_frequent_patterns 3. 使用find_frequent_patterns()函数进行频繁项集挖掘,如:frequent_itemsets = find_frequent_patterns(transactions, min_support) 其中transactions是事务数据集,min_support是最小支持。 ### 回答2: FP-tree算法是一种用于频繁模式挖掘算法,它是一种新型的挖掘频繁项集算法,它挖掘频繁项集利用了一种基于结构的压缩存储的方式,能够大大减少挖掘频繁项集的时间和空间开销。它的主要思路是在构建形结构的同时,对于每个频繁项都记录其支持计数,这样就可以通过低空间高效的方式挖掘频繁项集。 在FP-tree算法中,首先需要进行数据预处理,将原始数据转换为FP-tree,在转换过程中需要统计每个元素的支持计数和元素之间的关联关系,并按照支持计数从大到小排序,然后剪枝去除支持计数小于最小支持的元素。接着,使用FP-tree进行频繁项集挖掘利用FP-tree形结构和每个元素的支持计数,可以使用分治法来递归地挖掘频繁项集。具体地,FP-tree算法使用递归方式遍历FP-tree,并迭代地将条件模式基转换为新的子问题,在这个过程中可以利用条件的模式基来更新FP-tree,最后根据这些更新后的频繁项集可以得出所有的频繁项集。 在Python中,FP-tree可以通过Python的库plyvel来进行实现,通过代码实现节点的添加,查询,删除,更新等操作,从而实现FP-tree的构建和使用。具体地,对于每个节点,可以用Python中的数据结构字典来进行表示,字典中包括节点的名称,支持计数,以及指向父节点和子节点的指针。在建的过程中,可以使用递归方式遍历每个元素,并根据元素的支持计数来进行排序和剪枝。在挖掘频繁项集的过程中,通过对进行递归遍历,可以找到每个元素的条件模式基,并使用条件模式基来更新FP-tree,最终可以得到所有的频繁项集。 总而言之,FP-tree算法是一种基于形结构和压缩存储的频繁项集挖掘算法,在实现上可以通过Python中的字典来进行节点的表示和操作,在具体实现中需要注意剪枝和更新的操作,以及频繁项集的递归遍历。 ### 回答3: FP算法是一种非常常见的频繁项集挖掘算法,它是由Han等人在2000年提出的。相比传统的Apriori算法FP算法的优点在于它可以高效地挖掘频繁项集,大幅提升了算法的效率和准确性。 FP算法的核心是FP数据结构,它是一种压缩存储的形结构,能够高效地存储频繁项集信息。FP算法的具体步骤如下: 1. 构建项头表:遍历所有的事务,统计每个项出现的频次,并按照频次从大到小排序,构建项头表。 2. 构建FP:遍历所有的事务,按照事务中项的顺序构建FP。每个事务中的项要按照项头表中的顺序排序。如果中已存在该项的节点,则将该节点的计数加1;否则,添加一个新的节点。 3. 抽取频繁项集:根据构建好的FP和项头表,采用递归的方式,从FP底部往上挖掘频繁项集FP算法实现可以使用Python语言,需要用到的库包括numpy和pandas。具体实现步骤如下: 1. 构建项头表:遍历数据集,统计每个项出现的频次,将频繁项保存到一个字典中。 ```python def create_item_dict(data_set): item_dict = {} for trans in data_set: for item in trans: if item in item_dict: item_dict[item] += 1 else: item_dict[item] = 1 return item_dict ``` 2. 构建FP:遍历数据集,按照项头表中的顺序构建FP。 ```python class TreeNode: def __init__(self, name_value, num_occurrences, parent_node): self.name = name_value self.count = num_occurrences self.parent = parent_node self.children = {} self.next = None def inc(self, num_occurrences): self.count += num_occurrences def create_tree(data_set, min_sup=1): item_dict = create_item_dict(data_set) freq_items = set([item for item in item_dict.keys() if item_dict[item] >= min_sup]) if len(freq_items) == 0: return None, None for item in item_dict.keys(): if item not in freq_items: del(item_dict[item]) header_table = {item: [item_dict[item], None] for item in freq_items} root_node = TreeNode('Null Set', 1, None) for trans in data_set: local_dict = {} for item in trans: if item in freq_items: local_dict[item] = header_table[item][0] if len(local_dict) > 0: ordered_items = [item[0] for item in sorted(local_dict.items(), key=lambda x: (-x[1], x[0]))] update_tree(ordered_items, root_node, header_table) return root_node, header_table def update_tree(items, cur_node, header_table): if items[0] in cur_node.children: cur_node.children[items[0]].inc(1) else: cur_node.children[items[0]] = TreeNode(items[0], 1, cur_node) if header_table[items[0]][1] is None: header_table[items[0]][1] = cur_node.children[items[0]] else: update_header(header_table[items[0]][1], cur_node.children[items[0]]) if len(items) > 1: update_tree(items[1:], cur_node.children[items[0]], header_table) def update_header(node_to_test, target_node): while node_to_test.next is not None: node_to_test = node_to_test.next node_to_test.next = target_node ``` 3. 抽取频繁项集:采用递归的方式,从FP底部往上挖掘频繁项集。 ```python def ascend_tree(leaf_node, prefix_path): if leaf_node.parent is not None: prefix_path.append(leaf_node.name) ascend_tree(leaf_node.parent, prefix_path) def find_prefix_path(base_pat, header_table): node = header_table[base_pat][1] pats = [] while node is not None: prefix_path = [] ascend_tree(node, prefix_path) if len(prefix_path) > 1: pats.append(prefix_path[1:]) node = node.next return pats def mine_tree(in_tree, header_table, min_sup, pre_fix, freq_item_list): bigL = [v[0] for v in sorted(header_table.items(), key=lambda x: (-x[1][0], x[0]))] for base_pat in bigL: new_freq_set = pre_fix.copy() new_freq_set.add(base_pat) freq_item_list.append(new_freq_set) cond_patt_bases = find_prefix_path(base_pat, header_table) my_cond_tree, my_head = create_tree(cond_patt_bases, min_sup) if my_head is not None: mine_tree(my_cond_tree, my_head, min_sup, new_freq_set, freq_item_list) ``` 通过以上实现,我们就可以使用FP算法高效地挖掘频繁项集了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Forgotten Legend

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值