Python编程:ISP中的色彩校正矩阵(CCM)

     色彩校正矩阵(Color Correction Matrix, CCM)是图像信号处理(ISP)流水线中的关键组件,用于校正图像传感器颜色响应,使其输出色彩与人眼感知或标准色彩空间相匹配。

CCM基础原理

1. CCM的作用

  • 校正传感器色彩滤镜的不完美

  • 匹配人眼视觉感知特性

  • 补偿光源色温变化影响

  • 使不同设备的色彩表现一致

2. 数学表示

色彩校正通过3x3矩阵乘法实现:

[R']   [m11 m12 m13]   [R]
[G'] = [m21 m22 m23] x [G]
[B']   [m31 m32 m33]   [B]

其中:

  • R,G,B为传感器原始RGB值

  • R',G',B'为校正后RGB值

  • mij为校正矩阵系数

CCM计算流程

1. 基于色卡的CCM计算

import numpy as np
import cv2

def compute_ccm(src_colors, target_colors):
    """
    计算色彩校正矩阵
    :param src_colors: 传感器捕获的色块颜色(Nx3矩阵)
    :param target_colors: 标准色块颜色(Nx3矩阵)
    :return: 3x3色彩校正矩阵
    """
    # 添加齐次坐标
    src = np.hstack([src_colors, np.ones((len(src_colors), 1))])
    
    # 计算每个通道的变换矩阵
    ccm = np.zeros((3, 4))
    for i in range(3):  # 对R,G,B通道分别计算
        ccm[i] = np.linalg.lstsq(src, target_colors[:, i], rcond=None)[0]
    
    # 提取3x3矩阵
    return ccm[:, :3]

# 示例:使用ColorChecker 24色卡
# 假设测得传感器值和标准值(实际应通过拍摄色卡获取)
src_rgb = np.array([
    [115, 82, 68],    # 深肤色
    [194, 150, 130],  # 浅肤色
    [90, 60, 102],    # 蓝色
    [85, 128, 115],   # 绿色
    [180, 130, 70],   # 橙色
    [70, 148, 73]     # 紫色
], dtype='float32')

target_rgb = np.array([
    [115, 82, 68],    # 标准值
    [194, 150, 130],
    [90, 60, 102],
    [85, 128, 115],
    [180, 130, 70],
    [70, 148, 73]
], dtype='float32')

ccm = compute_ccm(src_rgb, target_rgb)
print("计算得到的CCM:\n", ccm)

2. 优化CCM计算(带约束)

from scipy.optimize import minimize

def constrained_ccm(src, target):
    """带约束的CCM优化计算"""
    def loss_function(params):
        ccm = params.reshape(3,3)
        predicted = np.dot(src, ccm.T)
        return np.sum((predicted - target)**2)
    
    # 初始猜测(单位矩阵)
    init_guess = np.eye(3).flatten()
    
    # 约束条件(保持灰度平衡)
    def gray_balance_constraint(params):
        ccm = params.reshape(3,3)
        gray_response = np.sum(ccm, axis=1)
        return gray_response - 1  # 应等于1
    
    constraints = {
        'type': 'eq',
        'fun': gray_balance_constraint
    }
    
    result = minimize(loss_function, init_guess, 
                     constraints=constraints, method='SLSQP')
    
    return result.x.reshape(3,3)

optimized_ccm = constrained_ccm(src_rgb, target_rgb)
print("优化后的CCM:\n", optimized_ccm)

CCM在ISP中的实现

1. 基本CCM应用

def apply_ccm(image, ccm):
    """
    应用色彩校正矩阵
    :param image: 输入RGB图像(0-255)
    :param ccm: 3x3色彩校正矩阵
    :return: 校正后的RGB图像
    """
    # 转换为浮点并归一化
    img_float = image.astype('float32') / 255.0
    
    # 重塑为(像素数, 3)并应用矩阵
    pixels = img_float.reshape(-1, 3)
    corrected = np.dot(pixels, ccm.T)
    
    # 裁剪并转换回原格式
    corrected = np.clip(corrected, 0, 1).reshape(image.shape)
    return (corrected * 255).astype('uint8')

2. 带白平衡的CCM应用

def apply_ccm_with_wb(image, ccm, wb_gains):
    """
    应用CCM并整合白平衡
    :param wb_gains: 白平衡增益[R_gain, G_gain, B_gain]
    """
    # 应用白平衡
    wb_image = image.astype('float32')
    wb_image[..., 0] *= wb_gains[0]  # R
    wb_image[..., 1] *= wb_gains[1]  # G
    wb_image[..., 2] *= wb_gains[2]  # B
    
    # 应用CCM
    return apply_ccm(wb_image, ccm)

# 示例白平衡增益(通常从AWB算法获取)
wb_gains = [1.2, 1.0, 1.4]  # R, G, B
corrected_image = apply_ccm_with_wb(raw_image, ccm, wb_gains)

CCM优化

1. 色适应变换(CAT)

def apply_cat(ccm, src_white, target_white):
    """
    应用色适应变换(考虑光源变化)
    :param src_white: 源白点(XYZ坐标)
    :param target_white: 目标白点(XYZ坐标)
    """
    # Bradford变换矩阵
    bradford = np.array([
        [0.8951, 0.2664, -0.1614],
        [-0.7502, 1.7135, 0.0367],
        [0.0389, -0.0685, 1.0296]
    ])
    
    # 计算适应矩阵
    src_cone = np.dot(bradford, src_white)
    target_cone = np.dot(bradford, target_white)
    diag = np.diag(target_cone / src_cone)
    adapt_matrix = np.dot(np.dot(np.linalg.inv(bradford), diag), bradford)
    
    # 调整CCM
    return np.dot(ccm, adapt_matrix)

# 示例白点(D65和A光源)
d65_white = np.array([0.95047, 1.0, 1.08883])
a_white = np.array([1.0985, 1.0, 0.3558])

adapted_ccm = apply_cat(ccm, a_white, d65_white)

2. 多光照CCM融合

def interpolate_ccm(ccm_daylight, ccm_tungsten, ct, ct_day=6500, ct_tung=2850):
    """
    根据色温插值CCM
    :param ct: 当前色温
    :param ct_day: 日光色温(默认6500K)
    :param ct_tung: 钨丝灯色温(默认2850K)
    """
    if ct >= ct_day:
        return ccm_daylight
    elif ct <= ct_tung:
        return ccm_tungsten
    else:
        # 线性插值
        ratio = (ct - ct_tung) / (ct_day - ct_tung)
        return ccm_daylight * ratio + ccm_tungsten * (1 - ratio)

CCM性能优化

1. 定点数实现

def ccm_fixed_point(image, ccm, fraction_bits=8):
    """
    定点数CCM实现(适合硬件)
    :param fraction_bits: 小数部分位数
    """
    scale = 1 << fraction_bits
    ccm_scaled = (ccm * scale).astype('int32')
    
    # 处理每个像素
    corrected = np.zeros_like(image)
    for i in range(3):  # R,G,B通道
        for j in range(3):  # CCM行
            corrected[...,i] += image[...,j] * ccm_scaled[i,j]
        corrected[...,i] = np.right_shift(corrected[...,i], fraction_bits)
    
    return np.clip(corrected, 0, 255).astype('uint8')

2. 查表法(LUT)优化

def build_ccm_lut(ccm, size=33):
    """
    构建CCM的3D LUT
    :param size: LUT每维大小
    """
    lut = np.zeros((size, size, size, 3), dtype='float32')
    axis = np.linspace(0, 1, size)
    
    for ri, r in enumerate(axis):
        for gi, g in enumerate(axis):
            for bi, b in enumerate(axis):
                rgb = np.array([r, g, b])
                lut[ri, gi, bi] = np.dot(ccm, rgb)
    
    return lut

def apply_ccm_lut(image, lut):
    """应用CCM LUT"""
    # 归一化图像到LUT尺寸
    scaled = (image * (lut.shape[0]-1) / 255.0
    indices = scaled.astype('int32')
    
    # 三线性插值(简化版)
    return lut[indices[...,0], indices[...,1], indices[...,2]]

CCM验证与评估

1. 色差计算(ΔE)

def delta_e(rgb1, rgb2):
    """计算CIEDE2000色差"""
    # 转换为Lab色彩空间
    lab1 = cv2.cvtColor(rgb1[np.newaxis, np.newaxis], cv2.COLOR_RGB2LAB)[0,0]
    lab2 = cv2.cvtColor(rgb2[np.newaxis, np.newaxis], cv2.COLOR_RGB2LAB)[0,0]
    
    # 简化的ΔE计算
    return np.sqrt(np.sum((lab1 - lab2)**2))

def evaluate_ccm(ccm, test_colors, target_colors):
    """评估CCM性能"""
    errors = []
    for src, tgt in zip(test_colors, target_colors):
        corrected = np.dot(ccm, src)
        errors.append(delta_e(corrected, tgt))
    
    avg_error = np.mean(errors)
    max_error = np.max(errors)
    print(f"平均ΔE: {avg_error:.2f}, 最大ΔE: {max_error:.2f}")
    return avg_error, max_error

# 使用色卡测试集评估
test_colors = np.array([...])  # 测试色块
target_colors = np.array([...])  # 标准值
evaluate_ccm(ccm, test_colors, target_colors)

2. 灰度平衡检查

def check_gray_balance(ccm):
    """检查CCM的灰度平衡"""
    gray_input = np.array([[0.5, 0.5, 0.5]])  # 中性灰
    gray_output = np.dot(gray_input, ccm.T)
    imbalance = np.abs(gray_output - gray_input).mean()
    print(f"灰度不平衡度: {imbalance:.4f}")
    return imbalance < 0.01  # 阈值

is_balanced = check_gray_balance(ccm)

实际应用建议

  1. 校准流程

    • 使用标准色卡(如X-Rite ColorChecker)拍摄

    • 在不同光照条件下采集数据

    • 使用优化算法计算最佳CCM

  2. 动态调整

    • 根据场景色温调整CCM

    • 结合AWB算法实时优化

  3. 硬件考虑

    • 定点数精度选择(通常8-12位小数)

    • 矩阵乘法并行化处理

    • 考虑与相邻ISP模块(如去马赛克、降噪)的协同优化

CCM是保证图像色彩准确性的关键环节,需要根据具体传感器特性和应用场景进行精细调校。现代ISP通常采用动态CCM策略,能够根据光照条件和场景内容自动调整矩阵参数,以获得最佳色彩表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值