欧拉定理

懒癌晚期,直接copy维基百科吧
维基百科——欧拉定理

在数论中,欧拉定理(也称费马-欧拉定理或欧拉 {\displaystyle {\varphi }} {\varphi }函数定理)是一个关于同余的性质。欧拉定理表明,若 {\displaystyle n,a} n,a为正整数,且 {\displaystyle n,a} n,a互素(即 {\displaystyle \gcd(a,n)=1} \gcd(a,n)=1),则

{\displaystyle a^{\varphi (n)}\equiv 1{\pmod {n}}} a^{{\varphi (n)}}\equiv 1{\pmod n}
即 {\displaystyle a^{\varphi (n)}} a^{{\varphi (n)}}与1在模n下同余;φ(n)为欧拉函数。欧拉定理得名于瑞士数学家莱昂哈德·欧拉。

欧拉定理实际上是费马小定理的推广。

目录
1 例子
2 证明
3 参看
4 参考书籍
例子
首先看一个基本的例子。令 {\displaystyle a=3} a = 3, {\displaystyle n=5} n=5,此两数为互质正整数。小于等于5的正整数中与5互质的数有4个(1、2、3和4),所以 {\displaystyle \varphi (5)=4} \varphi (5)=4(详情见欧拉函数)。计算: {\displaystyle a^{\varphi (n)}=3^{4}=81\equiv 1{\pmod {5}}} a^{\varphi(n)} = 3^4 = 81 \equiv 1 \pmod{5} ,与定理结果相符。

使用本定理可大程度地简化幂的模运算。比如计算 {\displaystyle 7^{222}} 7^{{222}}的个位数时,可将此命题视为求 {\displaystyle 7^{222}} 7^{{222}}被10除的余数:因7和10互质,且 {\displaystyle \varphi (10)=4} \varphi (10)=4,故由欧拉定理可知 {\displaystyle 7^{4}\equiv 1{\pmod {10}}} 7^{4}\equiv 1{\pmod {10}}。所以 {\displaystyle 7^{222}=7^{4\cdot 55+2}=(7^{4})^{55}\cdot 7^{2}\equiv 1^{55}\cdot 7^{2}\equiv 49\equiv 9{\pmod {10}}} 7^{{222}}=7^{{4\cdot 55+2}}=(7^{4})^{{55}}\cdot 7^{2}\equiv 1^{{55}}\cdot 7^{2}\equiv 49\equiv 9{\pmod {10}}。

一般在简化幂的模运算的时候,当 {\displaystyle a} a和 {\displaystyle n} n互质时,可对 {\displaystyle a} a的指数取模 {\displaystyle \varphi (n)} \varphi (n):

{\displaystyle a^{x}\equiv a^{y}{\pmod {n}}} a^{x}\equiv a^{y}{\pmod n},其中 {\displaystyle x\equiv y{\pmod {\varphi (n)}}} x\equiv y{\pmod {\varphi (n)}}。

证明
一般的证明中会用到“所有与 {\displaystyle n} n互质的同余类构成一个群”的性质,也就是说,设 {\displaystyle \left{{\overline {a_{1}}},{\overline {a_{2}}},\cdots ,{\overline {a_{\varphi (n)}}}\right}} \left{\overline {a_{1}},\overline {a_{2}},\cdots ,\overline {a_{{\varphi (n)}}}\right}是比 {\displaystyle n} n 小的正整数中所有与 {\displaystyle n} n 互素的数对应的同余类组成的集合(这个集合也称为模n 的简化剩余系)。这些同余类构成一个群,称为整数模n乘法群。因为此群阶为 {\displaystyle \varphi (n)} {\displaystyle \varphi (n)},所以 {\displaystyle a^{\varphi (n)}\equiv 1{\pmod {n}}} a^{{\varphi (n)}}\equiv 1{\pmod n}。

当 {\displaystyle n} n是素数的时候, {\displaystyle \varphi (n)=n-1} \varphi (n)=n-1,所以欧拉定理变为:

{\displaystyle a^{n-1}\equiv 1{\pmod {n}}} a^{{n-1}}\equiv 1{\pmod n}或
{\displaystyle a^{n}\equiv a{\pmod {n}}} a^{{n}}\equiv a{\pmod n}
这就是费马小定理。

老婆镇楼
虽然格式错误一大堆,不过起码有个链接嘛,2333
数学真TM奇妙

阅读更多
个人分类: wiki摘录 数学基础
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭