0. 简单理解
在原论文Attention is all you need当中所提出的Transformer架构将过去的RNN/CNN 架构全部替换为Attention结构,提高了在NLP领域对于全文的理解能力和并行度,并且在其它领域该架构也有广泛的应用,本文作者为深度学习领域小白,尽可能用通俗的语言来描述这一架构,如果文中有错误或者理解不到位的地方,敬请读者指出
这里的并行度是指之前的RNN模型,当前时刻的输出依赖于前一个时刻的输出,并不能进行并行计算,这里的Transformer模型可以一次抓取整个句子的信息,主要运算时矩阵乘,所以有很强的并行性
1. 总体架构
1.1 Encoder
Transformer的总体架构如下图所示,左侧部分为编码器encoder,它负责将我们的翻译目标token(最小语义块)拆解成一个个的key
和value
, 类似于变形金刚当中的拆解. 它的输入为翻译目标的句子,由于不同的token长度不同,所以我们需要进行padding操作,但是padding的部分我们不用关心,所以需要进行掩码操作,这个掩码其实是一个上三角矩阵,将我们不需要关心的位置置为True即可.
它有两个子层,一个是多头自注意力层,另外一个是前向层.Transfomer当中的Encoder由N个这样的结构堆叠而成(原文中为6).
Encoder层的输出为key
和 value
,提供给Decoder层使用
1.2 Decoder
右侧部分为Decoder层,它由三个子层堆叠而成,分别是带掩码的自注意层、多头注意力层以及一个全连接层(dropout = 0.1).
需要注意的是,在第二个子层当中,Multi-head Attention的K、V来自Encoder的输出,这部分不理解可以跳转到文末的附录当中查看
2. 实现代码
2.1 数据预处理
Transfomer当中的输入输出都是将句子中的token用映射来表示, 输入/输出 所有的token会用一个词典来记录,我们的inputs就是记录句子的单词在词典当中对应的下标即可
sentence = [
# enc_input dec_input dec_output
['ich mochte ein bier P','S i want a beer .', 'i want a beer . E'],
['ich mochte ein cola P','S i want a coke .', 'i want a coke . E'],
]
# 词典,padding用0来表示
# 源词典
src_vocab = {'P':0, 'ich':1,'mochte':2,'ein':3,'bier':4,'cola':5}
src_vocab_size = len(src_vocab) # 6
# 目标词典(包含特殊符)
tgt_vocab = {'P':0,'i':1,'want':2,'a':3,'beer':4,'coke':5,'S':6,'E':7,'.':8}
# 反向映射词典,idx ——> word
idx2word = {v:k for k,v in tgt_vocab.items()}
tgt_vocab_size = len(tgt_vocab) # 9
src_len = 5 # 输入序列enc_input的最长序列长度,其实就是最长的那句话的token数
tgt_len = 6 # 输出序列dec_input/dec_output的最长序列长度
# 这个函数把原始输入序列转换成token表示
def make_data(sentence):
enc_inputs, dec_inputs, dec_outputs = [],[],[]
for i in range(len(sentence)):
enc_input = [src_vocab[word] for word in sentence[i][0].split()]
dec_input = [tgt_vocab[word] for word in sentence[i][1].split()]
dec_output = [tgt_vocab[word] for word in sentence[i][2].split()]
#这里的enc_inputs、dec_inputs存放的都是词典的序列号 在给出的sentence当中已经对句子进行了填充 相同位置(encode decode)都是相同长度
enc_inputs.append(enc_input)
dec_inputs.append(dec_input)
dec_outputs.append(dec_output)
# LongTensor是专用于存储整型的,Tensor则可以存浮点、整数、bool等多种类型
return torch.LongTensor(enc_inputs),torch.LongTensor(dec_inputs),torch.LongTensor(dec_outputs)
enc_inputs, dec_inputs, dec_outputs = make_data(sentence)
# 使用Dataset加载数据
class MyDataSet(Data.Dataset):
def __init__(self,enc_inputs, dec_inputs, dec_outputs):
super(MyDataSet,self).__init__()
self.enc_inputs = enc_inputs
self.dec_inputs = dec_inputs
self.dec_outputs = dec_outputs
#构造一个DataSet的常用步骤 实现__len__和__getitem__两个函数
def __len__(self):
# 我们前面的enc_inputs.shape = [2,5],所以这个返回的是2
return self.enc_inputs.shape[0]
# 根据idx返回的是一组 enc_input, dec_input, dec_output
def __getitem__(self, idx):
return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]
# 构建DataLoader
loader = Data.DataLoader(dataset=MyDataSet(enc_inputs,dec_inputs, dec_outputs),batch_size=2,shuffle=True)
2.2 模型参数
# 用来表示一个词的向量长度 //词的原始长度
d_model = 512
# FFN的隐藏层神经元个数
d_ff = 2048
# 分头后的q、k、v词向量长度,依照原文我们都设为64
# 原文:queries and kes of dimention d_k,and values of dimension d_v .所以q和k的长度都用d_k来表示
d_k = d_v = 64
# Encoder Layer 和 Decoder Layer的个数
n_layers = 6
# 多头注意力中head的个数,原文:we employ h = 8 parallel attention layers, or heads
n_heads = 8
2.2 Positional Encoding 位置编码
#输入的embedding 构造一个5000个token * d_model 的矩阵 取句子到的位置上的就行
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000): # dropout是原文的0.1,max_len原文没找到
'''max_len是假设的一个句子最多包含5000个token'''
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# 开始位置编码部分,先生成一个max_len * d_model 的矩阵,即5000 * 512
# 5000是一个句子中最多的token数,512是一个token用多长的向量来表示,5000*512这个矩阵用于表示一个句子的信息
pe = torch.zeros(max_len, d_model)
pos = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) # pos:[max_len,1],即[5000,1]
# 先把括号内的分式求出来,pos是[5000,1],分母是[256],通过广播机制相乘后是[5000,256]
div_term = pos / pow(10000.0,torch.arange(0, d_model, 2).float() / d_model) #2i <= d_model
# 再取正余弦
pe[:, 0::2] = torch.sin(div_term)
pe[:, 1::2] = torch.cos(div_term)
# 一个句子要做一次pe,一个batch中会有多个句子,所以增加一维用来和输入的一个batch的数据相加时做广播
pe = pe.unsqueeze(0) # [5000,512] -> [1,5000,512]
# 将pe作为固定参数保存到缓冲区,不会被更新
self.register_buffer('pe', pe) #跟随模型一起被保存
def forward(self, x):
'''x: [batch_size, seq_len, d_model]'''
# 5000是我们预定义的最大的seq_len,就是说我们把最多的情况pe都算好了,用的时候用多少就取多少
x = x + self.pe[:, :x.size(1), :]
return self.dropout(x) # return: [batch_size, seq_len, d_model], 和输入的形状相同
2.3 Pad mask 填充的掩码
# 为enc_input和dec_input做一个mask,把占位符P的token(就是0) mask掉
# 返回一个[batch_size, len_q, len_k]大小的布尔张量,True是需要mask掉的位置
def get_attn_pad_mask(seq_q, seq_k):
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# seq_k.data.eq(0)返回一个等大的布尔张量,seq_k元素等于0的位置为True,否则为False
# 然后扩维以保证后续操作的兼容(广播)
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # pad_attn_mask: [batch_size,1,len_k]
# 要为每一个q提供一份k,所以把第二维度扩展了q次
# 另注意expand并非真正加倍了内存,只是重复了引用,对任意引用的修改都会修改原始值
# 这里是因为我们不会修改这个mask所以用它来节省内存
return pad_attn_mask.expand(batch_size, len_q, len_k) # return: [batch_size, len_q, len_k]
# 返回的是batch_size个 len_q * len_k的矩阵,内容是True和False,
# 第i行第j列表示的是query的第i个词对key的第j个词的注意力是否无意义,若无意义则为True,有意义的为False(即被padding的位置是True)
2.4 Subsequence Mask 解码器的自注意力掩码
# 用于获取对后续位置的掩码,防止在预测过程中看到未来时刻的输入
# 原文:to prevent positions from attending to subsequent positions
def get_attn_subsequence_mask(seq):
"""seq: [batch_size, tgt_len]"""
# batch_size个 tgt_len * tgt_len的mask矩阵
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
# np.triu 是生成一个 upper triangular matrix 上三角矩阵,k是相对于主对角线的偏移量
# k=1意为不包含主对角线(从主对角线向上偏移1开始)
subsequence_mask = np.triu(np.ones(attn_shape), k=1)
subsequence_mask = torch.from_numpy(subsequence_mask).byte() # 因为只有0、1所以用byte节省内存
return subsequence_mask # return: [batch_size, tgt_len, tgt_len]
#这个函数就是生成一个上三角矩阵 其中当前位置之后的都被置为1,即不可见
2.6 Scaled Dot Product Attention
计算公式如下所示
A
t
t
e
n
t
i
o
n
(
Q
,
K
,
V
)
=
s
o
f
t
m
a
x
(
Q
K
T
d
k
)
V
Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V
Attention(Q,K,V)=softmax(dkQKT)V
之所以需要除以一个
d
k
{\sqrt{d_k}}
dk是因为如果模型的数据量很大,softmax后的分布比较极端,会导致梯度消失,训练难以进行
class ScaledDotProductionAttention(nn.Module):
'''
input Q,K,V attn_mask
retrun context: [batch_size, n_heads, len_q, d_v]
'''
def __init__(self):
super(ScaledDotProductionAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
'''
Q: [batch_size, n_heads, len_q, d_k]
K: [batch_size, n_heads, len_k, d_k]
V: [batch_size, n_heads, len_v(=len_k), d_v] 全文两处用到注意力,一处是self attention,另一处是co attention,前者不必说,后者的k和v都是encoder的输出,所以k和v的形状总是相同的
attn_mask: [batch_size, n_heads, seq_len, seq_len]
'''
# 1) 计算注意力分数QK^T/sqrt(d_k)
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores: [batch_size, n_heads, len_q, len_k]
# 2) 进行 mask 和 softmax
# mask为True的位置会被设为-1e9, soft之后为True的地方权重会特别小 以至于忽略不计
scores.masked_fill_(attn_mask, -1e9)
attn = nn.Softmax(dim=-1)(scores) # attn: [batch_size, n_heads, len_q, len_k]
# 3) 乘V得到最终的加权和
context = torch.matmul(attn, V) # context: [batch_size, n_heads, len_q, d_v]
'''
得出的context是每个维度(d_1-d_v)都考虑了在当前维度(这一列)当前token对所有token的注意力后更新的新的值,
换言之每个维度d是相互独立的,每个维度考虑自己的所有token的注意力,所以可以理解成1列扩展到多列
返回的context: [batch_size, n_heads, len_q, d_v]本质上还是batch_size个句子,
只不过每个句子中词向量维度512被分成了8个部分,分别由8个头各自看一部分,每个头算的是整个句子(一列)的512/8=64个维度,最后按列拼接起来
'''
return context # context: [batch_size, n_heads, len_q, d_v]
2.7 MultiHead Attention
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_model)
self.W_K = nn.Linear(d_model, d_model)
self.W_V = nn.Linear(d_model, d_model)
self.concat = nn.Linear(d_model, d_model)
def forward(self, input_Q, input_K, input_V, attn_mask):
'''
input_Q: [batch_size, len_q, d_model] len_q是作为query的句子的长度,比如enc_inputs(2,5,512)作为输入,那句子长度5就是len_q
input_K: [batch_size, len_k, d_model]
input_V: [batch_size, len_v(len_k), d_model]
attn_mask: [batch_size, seq_len, seq_len]
'''
residual, batch_size = input_Q, input_Q.size(0)
# 1)linear projection [batch_size, seq_len, d_model] -> [batch_size, n_heads, seq_len, d_k/d_v]
#这里的[batch_size, n_heads, len_q, d_k]顺序是multi-head attention的固定顺序 这里的transpose(1,2)可以忽略
Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k]
K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k]
V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v(=len_k), d_v]
# 2)计算注意力
# 自我复制n_heads次,为每个头准备一份mask
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask: [batch_size, n_heads, seq_len, seq_len]
context = ScaledDotProductionAttention()(Q, K, V, attn_mask) # context: [batch_size, n_heads, len_q, d_v]
# 3)concat部分
context = torch.cat([context[:,i,:,:] for i in range(context.size(1))], dim=-1)
output = self.concat(context) # [batch_size, len_q, d_model]
return nn.LayerNorm(d_model).cuda()(output + residual) # output: [batch_size, len_q, d_model]
'''
最后的concat部分,网上的大部分实现都采用的是下面这种方式(也是哈佛NLP团队的写法)
context = context.transpose(1, 2).reshape(batch_size, -1, d_model)
output = self.linear(context)
但是我认为这种方式拼回去会使原来的位置乱序,于是并未采用这种写法,两种写法最终的实验结果是相近的
'''
2.8 FeedForward Networks
class PositionwiseFeedForward(nn.Module):
def __init__(self):
super(PositionwiseFeedForward, self).__init__()
# 就是一个MLP
self.fc = nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Linear(d_ff, d_model)
)
def forward(self, inputs):
'''inputs: [batch_size, seq_len, d_model]'''
residual = inputs
output = self.fc(inputs)
return nn.LayerNorm(d_model).cuda()(output + residual) # return: [batch_size, seq_len, d_model] 形状不变
2.9 Encoder Layer
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
#sublayer1
self.enc_self_attn = MultiHeadAttention()
#sublayer2
self.pos_ffn = PositionwiseFeedForward()
def forward(self, enc_inputs, enc_self_attn_mask):
'''
enc_inputs: [batch_size, src_len, d_model]
enc_self_attn_mask: [batch_size, src_len, src_len]
'''
# Q、K、V均为 enc_inputs
enc_ouputs = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_ouputs: [batch_size, src_len, d_model]
enc_ouputs = self.pos_ffn(enc_ouputs) # enc_outputs: [batch_size, src_len, d_model]
return enc_ouputs # enc_outputs: [batch_size, src_len, d_model]
2.10 Encoder
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
# 直接调的现成接口完成词向量的编码,输入是类别数和每一个类别要映射成的向量长度
self.src_emb = nn.Embedding(src_vocab_size, d_model)
self.pos_emb = PositionalEncoding(d_model)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
def forward(self, enc_inputs):
'''enc_inputs: [batch_size, src_len]'''
enc_outputs = self.src_emb(enc_inputs) # [batch_size, src_len] -> [batch_size, src_len, d_model]
enc_outputs = self.pos_emb(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
# Encoder中是self attention,所以传入的Q、K都是enc_inputs
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # enc_self_attn_mask: [batch_size, src_len, src_len]
for layer in self.layers:
enc_outputs = layer(enc_outputs, enc_self_attn_mask)
return enc_outputs # enc_outputs: [batch_size, src_len, d_model]
2.11 DecoderLayer
class DecoderLayer(nn.Module):
def __init__(self):
super(DecoderLayer, self).__init__()
self.dec_self_attn = MultiHeadAttention()
self.dec_enc_attn = MultiHeadAttention()
self.pos_ffn = PositionwiseFeedForward()
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
'''
dec_inputs: [batch_size, tgt_len, d_model]
enc_outputs: [batch_size, src_len, d_model]
dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
dec_enc_attn_mask: [batch_size, tgt_len, src_len] 前者是Q后者是K
'''
dec_outputs = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
# input_Q input_K input_V
dec_outputs = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
dec_outputs = self.pos_ffn(dec_outputs)
return dec_outputs # dec_outputs: [batch_size, tgt_len, d_model]
2.12 Decoder
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
self.pos_emb = PositionalEncoding(d_model)
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
def forward(self, dec_inputs, enc_inputs, enc_outputs):
'''
这三个参数对应的不是Q、K、V,dec_inputs是Q,enc_outputs是K和V,enc_inputs是用来计算padding mask的
dec_inputs: [batch_size, tgt_len]
enc_inpus: [batch_size, src_len]
enc_outputs: [batch_size, src_len, d_model]
'''
dec_outputs = self.tgt_emb(dec_inputs)
dec_outputs = self.pos_emb(dec_outputs).cuda()
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda()
dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda()
# 将两个mask叠加,布尔值可以视为0和1,和大于0的位置是需要被mask掉的,赋为True,和为0的位置是有意义的为False
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask +
dec_self_attn_subsequence_mask), 0).cuda()
# 这是co-attention部分,为啥传入的是enc_inputs而不是enc_outputs呢 确实 这里是不是错了...
dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
for layer in self.layers:
dec_outputs = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
return dec_outputs # dec_outputs: [batch_size, tgt_len, d_model]
2.13 Transformer
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.encoder = Encoder().cuda()
self.decoder = Decoder().cuda()
self.projection = nn.Linear(d_model, tgt_vocab_size).cuda()
def forward(self, enc_inputs, dec_inputs):
'''
enc_inputs: [batch_size, src_len]
dec_inputs: [batch_size, tgt_len]
'''
enc_outputs = self.encoder(enc_inputs)
dec_outputs = self.decoder(dec_inputs, enc_inputs, enc_outputs)
dec_logits = self.projection(dec_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
# 解散batch,一个batch中有batch_size个句子,每个句子有tgt_len个词(即tgt_len行),
# 现在让他们按行依次排布,如前tgt_len行是第一个句子的每个词的预测概率,
# 再往下tgt_len行是第二个句子的,一直到batch_size * tgt_len行
return dec_logits.view(-1, dec_logits.size(-1)) # [batch_size * tgt_len, tgt_vocab_size]
'''最后变形的原因是:nn.CrossEntropyLoss接收的输入的第二个维度必须是类别'''
3 一些解释说明
3.1 如何理解文中的Q、K、V
假想你有一个map/dict
或者其他名字,一个key
对应一个value
,在检索的时候,给定query
,如果query in map
,就是query
等于其中一个key
,就返回对应的value
。这个方法太hard了,有就是有,没有就是没有。对于qkv
都是向量的情况,这种方法不可行,只能让它变soft,那就是算一算query
和key
的关系,按照比例对value
加和,这和max变成softmax有异曲同工之妙
论文当中的Q、K、V都是根据输入的序列来确定的,但是由序列映射到的K、Q、V的值映射的那个权重是进行学习权重矩阵
W
Q
、
W
K
、
W
V
W^{Q} 、W^K、W^V
WQ、WK、WV, 多头注意力就是将一个任务分配给八个人去做,如果有一个人(一组参数)不靠谱,对整个模型影响也不大
3.2 如何理解这个模型?
举个简单的例子来说明,比如你想翻译我爱中国
这句话到英文I love China
, 那么你训练的时候,Encoder就会对I love China
进行一个"编码"操作,将其中的token如i
、love
、china
拆分为一个个的向量K、V,然后翻译的时候会计算向量比如说我
作为Q和向量i
、love
、china
之间的相似度,计算得到最后和i
的相似度最大,softmax出来的概率最大,所以会被翻译为i
A
t
t
e
n
t
i
o
n
(
Q
,
K
,
V
)
=
s
o
f
t
m
a
x
(
Q
K
T
d
k
)
V
Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V
Attention(Q,K,V)=softmax(dkQKT)V
Reference
[1] Attention is all you need paper
[2] 李沐-Transformer
[3] 耿直哥-bilibili
[4] https://github.com/BoXiaolei/MyTransformer_pytorch
感受
这是第二遍阅读这篇论文,之前看过对里面的内容不求甚解,这次通过阅读代码以及重新阅读论文有了很多新的理解和领悟,当然由于最近其它的任务太多,没有进一步深究也是非常遗憾,等下周结束手头的事情应该可以进一步更新这篇文章.