最大公约数
最大公因数 也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。简单的说就是两数能同时被同一个数,除尽没有余数的,同时那个数是除尽中最大的数。
比如48和36
48=2x2x2x2x3
36=2x2x3x3
其中48和36中都出现2x2x3;
所以48和36的大公约数为12.
方法一
思路 :两个数的最大公约数是能把两个一大一小的两个数除尽,最大的除数也是两个数中最大的数,因此用条件操作符(n > m ? n : m)求出最大的数,作为除数,然后依次减减,但要打于0,作为条件放在循环中。
int main()
{
int n = 0;
int m = 0;
scanf("%d %d", &n, &m);
int mum = (n > m ? n : m);
while (mum >0)
{
if (n % mum == 0 && m % mum == 0)
{
break;
}
mum--;
}
printf("%d", mum);
return 0;
}
方法二
辗转相除法
- 辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
- 用较大数除以较小数,再用出现的余数去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后为0,则除数为最大公约数。
我原理也不是很清楚只知道是如此算到的。然后在看看上面的图,懂计算的步骤。
代码演示
int main()
{
int m = 0;
int n = 0;
scanf("%d %d", &m, &n);
int c = 0; //用来存放余数
while (m % n != 0)
{
c = m % n;
m = n;
n = c;//最大公约数会落在n上
}
printf("%d", n);
return 0;
}
递归实现
#include <stdio.h>
int gcd(int p, int q)
{
if (q == 0)
return p;
int r = p % q;
return gcd(q, r);
}
int main()
{
int a = gcd(36, 48);
printf("%d", a);
return 0;
}
最小公倍数
最小公倍数 :公倍数(common multiple)指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。
方法一
思路 :两个数的最小倍数也是比两个数的最大的数还要大,因此用条件操作符(n > m ? n : m)求出最大的数,作为被除数,然后依次加加,找到后跳出循环。
代码演示
int main()
{
int n = 0;
int m = 0;
scanf("%d %d", &n, &m);
int e = (n > m ? n : m);
while (e>0)
{
if (e % n == 0 && e % m == 0)
break;
e++;
}
printf("%d ", e);
return 0;
}
方法二
公式:两个数的乘积(m * n) / 最大公约数
int main()
{
int m = 0;
int n = 0;
scanf("%d %d", &m, &n);
int c = 0;
int a = m;
int b = n;
while (a % b != 0)
{
c = a % b;
a = b;
b = c;
}
printf("%d", m*n/b);
return 0;
}
方法三
思路 :如果一个数乘于一个变量 i 还能被另一个数整除,那这个数(n * i)一定是着两个数的最小公倍数。
int main()
{
int n = 0;
int m = 0;
scanf("%d %d", &n, &m);
int i = 1;
while (n * i % m != 0)
{
i++;
}
printf("%d ", n * i);
return 0;
}