【解刊】IEEE(Trans)系列,CCF-A类顶刊,国人友好,无需版面费!

计算机类 • 好刊解读

今天小编带来IEEE旗下计算机领域好刊的解读,如有相关领域作者有意向投稿,可作为重点关注!后文有同领域快刊发表案例,供您投稿参考~

01 期刊简介

IEEE Transactions on Dependable and Secure Computing

☑️出版社:IEEE

☑️ISSN:1545-5971

eISSN:1941-0018

☑️影响因子:7.3

☑️期刊分区:JCR1区,中科院2/1区

☑️检索数据库:SCIE & Scopus 在检

☑️出刊频率:月刊,一年一卷,一卷6期,最新一期Issue 5 • Sept.-Oct.-2023

☑️数据库收录年份:2004年

☑️期刊官网:https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858

☑️投稿系统:https://mc.manuscriptcentral.com/tdsc-cs

PS:期刊入选中国计算机学会CCF-A类推荐

期刊主编 Editor-in-Chief:

Cong Wang
Department of Computer Science
City University of Hong Kong, Hong Kong

02 影响因子

IF(2022):7.3,逐年稳步上涨

截图来源:letpub 

03 期刊分区/预警情况

JCR1区,中科院2/1区,无中科院预警记录

JCR分区为Q1区,SCIE收录检索

中科院分区中,大类计算机科学为2区,小类计算机:硬件为1区,小类计算机:软件工程为1区,小类计算机:信息系统为2区,非综述期刊。

截图来源:letpub 

 

04 自引率

自引率为5.50%,处于安全阈值内   

截图来源:letpub 

05 国人占比

国人占比第二,发文对国人友好

截图来源:科睿唯安 

06 发文量

数据库收录年份2004年,稳定检索19年;近几年发文量在200篇左右,发文量稳定

截图来源:科睿唯安 

07 是否OA

期刊发表形式为混合开放获取,可选择传统模式发表(无需版面费),也可选择OA形式发表

截图来源:期刊官网 

08 接收领域

IEEE Transactions on Dependable and Secure Computing (TDSC) 公布了档案研究结果,重点研究通过设计、建模和评估支持实现系统和网络的基础、方法和机制,这些系统和网络在不影响性能的情况下达到所需的可靠和安全程度。重点还包括测量、建模和仿真技术,以及联合评估、验证和设计性能、安全性和可靠性约束的基础。

09 审稿周期

根据官网发表案例,审稿周期在10个月左右录用周期较长

计算机类顶刊,历时10个月录用 

来源:letpub 

质量要求严格,催稿是常态 

10 总结

这本期刊隶属于知名出版社IEEE旗下,Trans系列,CCF-A类推荐,计算机网络安全类顶刊,无需版面费,国人发文友好;但期刊要求高,审稿周期长,审稿意见回复难度高,有把握不着急的作者可以试试~

一手刊源 • 快刊推荐

经管与知识技术创新类SSCI

☑️影响因子:2.5-3.5

☑️期刊分区:JCR2区,中科院4区

☑️检索数据库:SSCI 在检

☑️版面类别:正刊

☑️录用案例:38天录用,录用后35天见刊,见刊后13天检索

图片

录用截图来源:期刊部投稿系统

计算机类SCIE

☑️影响因子:4.0-5.0

☑️期刊分区:JCR2区,中科院3区

☑️检索数据库:SCIE 在检

☑️版面类别:正刊

☑️接收领域:提高安全性和隐私性的边缘/云的智能方法的研究,如数字孪生等

☑️录用案例:2个月5天录用,录用后34天见刊

2023.10.31 | 见刊

2023.09.27 | Accept

2023.09.15 | 提交修改稿

2023.07.24 | 提交论文至期刊部系统

图片

录用截图来源:期刊部投稿系统

综合类EI

☑️检索数据库:EI &Scopus &Google Scholar

☑️版面类别:正刊

☑️数据库收录年份:2009年

☑️国人占比:47%,对国人友好

☑️年发文量:20篇左右

☑️接收领域:生物,环境,医学,化学等相关领域均可

☑️录用案例:29天录用

2023.05.31 | 提交论文至期刊部系统

2023.06.28 | Accept

图片

【解刊】IEEE(Trans)系列,CCF-A类顶刊,国人友好,无需版面费!

• 更多科研干货、期刊最新动态、期刊匹配、避雷选刊,可移步公众号“Unionpub学术

<think>好的,用户想了解t-SNE数据可视化的方法及实现。首先,我需要回忆一下t-SNE的基本概念和原理。根据引用[^1],t-SNE是一种非线性降维技术,用于将高维数据映射到低维空间,通常是2D或3D,方便可视化。引用[^3]提到,t-SNE能保留数据点之间的距离关系。接下来,用户可能需要具体的步骤和代码示例。 接下来,我应该整理t-SNE的实现步骤。通常包括数据准备、预处理、应用t-SNE和可视化。需要引用Scikit-learn的TSNE,如引用提到的。同时,注意参数设置,比如n_components、perplexity、learning_rate等,这些会影响结果。 然后,代码示例部分需要确保正确性。可能需要使用sklearn的TSNE模块,加载数据(比如MNIST或Iris),标准化数据,拟合模型,得到降维后的结果,再用matplotlib可视化。引用[^4]中有生成一维数据的例子,但用户可能需要更通用的二维示例。 还要考虑常见问题,比如计算成本高,适合小数据集。引用[^2]提到了原始论文,可能需要引用参数调整的重要性。此外,解释可视化结果时,强调簇的距离和形状,如引用[^4]中的别分离情况。 最后,生成相关问题,帮助用户进一步学习,比如与其他降维方法比较、参数影响、处理大数据的方法等。需要确保问题覆盖用户可能感兴趣的扩展话题。</think>### t-SNE数据可视化方法及实现 #### 1. **核心原理** t-SNE(t-分布随机邻域嵌入)通过优化高维和低维空间中数据点之间的相似性分布来实现降维。具体步骤包括: - 计算高维空间中数据点的相似性(使用高斯分布概率) - 在低维空间(如2D)中构建相似性分布(使用t-分布) - 通过梯度下降最小化两者之间的KL散度 #### 2. **实现步骤** **Python实现示例(使用Scikit-learn)** ```python from sklearn.manifold import TSNE from sklearn.datasets import load_digits import matplotlib.pyplot as plt # 加载示例数据(手写数字数据集) digits = load_digits() X = digits.data y = digits.target # 数据标准化(非必须但推荐) from sklearn.preprocessing import StandardScaler X = StandardScaler().fit_transform(X) # 执行t-SNE降维 tsne = TSNE(n_components=2, perplexity=30, random_state=42) X_tsne = tsne.fit_transform(X) # 可视化 plt.figure(figsize=(10, 8)) scatter = plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='tab10', alpha=0.6) plt.legend(*scatter.legend_elements(), title="Digits") plt.title("t-SNE Visualization of MNIST Digits") plt.xlabel("t-SNE 1") plt.ylabel("t-SNE 2") plt.show() ``` #### 3. **关键参数说明** - **`n_components`**: 目标维度(通常为2或3) - **`perplexity`**: 控制局部/全局结构的平衡(建议5-50) - **`learning_rate`**: 梯度下降步长(通常100-1000) - **`n_iter`**: 优化迭代次数(至少250)[^1] #### 4. **结果解读** - 簇之间的距离无明确意义,但簇内结构反映原始数据相似性 - 不同颜色的数据点代表不同别(如图中的数字0-9) - 重叠区域可能表示相似特征或降维信息损失 #### 5. **注意事项** - 适合可视化,**不适合**作为预处理特征输入模型 - 计算复杂度高,推荐样本量<10,000 - 每次运行结果可能有差异,可设置`random_state`固定结果[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值