【题目描述】
某个地区有n(n≤1000)个犯罪团伙,当地警方按照他们的危险程度由高到低给他们编号为1-n,他们有些团伙之间有直接联系,但是任意两个团伙都可以通过直接或间接的方式联系,这样这里就形成了一个庞大的犯罪集团,犯罪集团的危险程度由集团内的犯罪团伙数量唯一确定,而与单个犯罪团伙的危险程度无关(该犯罪集团的危险程度为n)。现在当地警方希望花尽量少的时间(即打击掉尽量少的团伙),使得庞大的犯罪集团分离成若干个较小的集团,并且他们中最大的一个的危险程度不超过n/2。为达到最好的效果,他们将按顺序打击掉编号1到k的犯罪团伙,请编程求出k的最小值。
【输入】
第一行一个正整数n。接下来的n行每行有若干个正整数,第一个整数表示该行除第一个外还有多少个整数,若第i行存在正整数k,表示i,k两个团伙可以直接联系。
【输出】
一个正整数,为k的最小值。
【输入样例】
7 2 2 5 3 1 3 4 2 2 4 2 2 3 3 1 6 7 2 5 7 2 5 6
【输出样例】
1
【提示】
【提示】
输出1(打击掉犯罪团伙)
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1500;
int p[N];
int c[N];
int a[N][N];
int findth(int x)
{
if (x == p[x]) return x;
return p[x] = findth(p[x]);
}
int main()
{
int n;
scanf("%d", &n);
for (int i = 1;i <= n;i++) {
p[i] = i;
c[i] = 1;
}
for (int i = 1;i <= n;i++) {
scanf("%d", &a[i][0]);
for (int j = 1;j <= a[i][0];j++) scanf("%d", &a[i][j]);
}
for (int i = n;i >= 1;i--) {
for (int j = 1;j <= a[i][0];j++) {
if (a[i][j] > i) {
int xx = findth(i);
int yy = findth(a[i][j]);
if (xx != yy) {
p[yy] = xx;
c[xx] += c[yy];
if (c[i] > (n >> 1)) {
printf("%d\n", i);
return 0;
}
}
}
}
}
return 0;
}