小波变换教程(1):基本原理

小波理论的基本概念及概述(第二版)

欢迎阅读此份关于小波变换的入门教程。小波变换是一个相对较新的概念(其出现大约是在20世纪80年代),但是有关于它的文章和书籍却不少。这其中大部分都是由数学专业人士写给其他同行看的,不过,仍然有大量数学专家不知道其他同行们讨论的是什么(我的一个数学教授就承认过)。换言之,大多数介绍小波变换的文献对那些小波新手们来说用处不大(此为个人观点)。

我刚开始接触小波变换的时候,曾经为了搞清楚小波变换这个这个神奇的世界到底发生了什么而苦苦挣扎,因为在这个领域的入门教材非常少。因而,我决定为新手们写一份教程。我自认为也是一个新手,必须承认,我也有很多理论细节没有弄清楚。不过,就工程应用而言,我认为弄清楚所有的理论细节大可不必。

这份教程将试着介绍一些小波理论的基本原理,并且不会给出这些原理和相关公式的证明,因为这份教程的目标读者暂时还不需要知道这些。不过,感兴趣的读者可以参阅引用的文献以便了解更深入的内容。

此篇文档假定你没有任何相关知识背景。要是有的话,请跳过以下内容,这些对你而言可能都是显然的。

要是你发现教程里有任何前后不协调或不正确的内容,请联系我。我很乐于收到关于教程的任何评论。

变换…啥?

首先,为什么需要变换,或者说到底什么是变换?

为了获取在原始信号中不易获得的信息,往往要对信号进行数学变换。以下篇幅均假定时域内信号为原始信号,经过数学变换后的信号为处理信号。

可用的变换有很多种,其中,傅立叶变换大概是目前最流行的。

实际中,多数信号的原始形式都是时域信号,也即不论如何测得的,信号总是关于时间的函数。换言之,绘制信号的图形时,一个轴代表时间(自变量),另一轴代表信号幅值(因变量)。在时域内作图,便可得到信号的时-幅表示。在多数信号处理有关的应用场景中,这种表示并不是最好的表示。很多时候,最易分辨的信息往往隐藏在信号的频率成分中。信号的频谱是指信号中的频率分量(或谱分量),其表示的是信号中存在哪些频率成分。

直觉上,我们都知道频率是跟事物的变化率有关的量。如果一样东西(专业术语应该为数学量或物理量)变化得很快,则它的频率就高;变换得慢,或者说变化得很平滑,则它的频率就低。如果该量保持不变,则其频率为零,或者说没有频率。例如,日报的频率就比月刊高(因为日报出版快)。

频率用“循环次数/秒”,或者用更常用的“赫兹”来衡量。例如,在美国,日常生活中所用交流电的频率是60Hz(世界上其他一些地区是50Hz)。这意味着,如果我们想要绘制电流变化曲线,得到的将是1秒内往复50次的正弦波。看下面几张图,第一幅图中是频率是3Hz的正弦信号,第二幅是频率10Hz的,第三幅则是频率50Hz,对比下吧。

那么怎样测量频率,或者说怎样得到一个信号中所含的频率成分呢?答案是傅立叶变换(FT)。对时域信号做傅立叶变换,就会得到信号的频谱。也就是说,此时我们绘制信号图形的话,一个轴是频率,另一个轴是频率分量的幅值。所得图像将告诉我们信号中包含的各种频率成分分别有多少。

频率轴从零开始,直至正无穷。每个频率都对应一个幅值。例如,如果我们对房间所用的电流信号做傅立叶变换,频谱图中在50Hz处会出现尖峰,其它频率对应的幅值则为零,因为信号中只包含了50Hz的频率分量。然而,很少有信号的傅立叶变换是如此简单的。实际中的信号大都包含多个频率分量。50Hz信号的傅立叶变换如下图所示:

图 1.4 50 Hz 信号的傅里叶变换

注意,图1.4给出了上下两张图,下图显示的其实是上图的前半部分。这是因为实值信号的频谱图是左右对称的,这点暂时不理解也无妨。上图能够看出这一特性。不过,由于后一半对称部分只不过是前一半图形的镜像,并未提供额外信息,因此,这部分经常不画出来。下文中出现的多数频谱图,我将只绘出前半部分。

为什么需要频率信息?

通常,一些在时域中不易看出的信息很容易在频域中观察到。

看一个生物信号的例子。设想我们正在观察一个心电信号。心脏专家一般都熟知典型的健康人心电图的形状。与这些典型形状存在显著偏差往往是疾病的征兆。

一些病征在时域表示的心电信号中并不明显。过去,心脏专家一般用记录在磁带上的时域心电图来分析心电信号。最近,新型的数字心电记录仪/分析仪可以利用心电图的频域信息来判断病征是否存在。对心电信号的频率成分进行分析能使他们更容易的诊断病情。

上面只是一个说明频率成分作用的简单例子。当前,傅立叶变换已经被用于不同的领域,涵盖了工程领域的各个分支。

尽管傅立叶变换可能是使用最多的(特别在电气工程领域),但它并不是唯一的变换。许多其他的变换也常为工程师和数学家们所用,如希尔伯特变换、短时傅立叶变换(下文会有更多介绍)、魏格纳分布和雷登变换,当然还有教程的主角——小波变换,而这些也仅是工程师和数学家们所用变换中的一小部分。每种变换都有其应用领域,也有其优缺点,小波变换也不例外。

为了更好地理解为什么需要小波变换,我们需要更深刻地认识傅立叶变换。傅立叶变换是一种可逆变换,即它允许原始信号和处理信号之间互相变换。但是,在任意时刻只有一种信号形式是可用的。也就是说,在时域信号中不包含频率信息,而经过傅里叶变换后的信号则不包含任何时间信息。说到这,头脑里很自然地会提出一个问题,为什么需要同时知道时间和频率信息呢?

我们马上就会知道,答案是具体问题具体分析。回想一下,傅立叶变换给出了信号中的频率信息,即它可以告诉我们原始信号包含各个频率成分到底有多少,但是并未告诉我们某个频率信号何时出现。对于所谓的平稳信号,这些信息并不需要。

让我们进一步探讨一下平稳的概念,因为它在信号分析中具有重要意义。如果信号中的频率分量不随时间变化,则称这类信号为平稳信号。平稳信号中的频率分量一直保持不变,那么,自然无需知道频率分量是何时出现的,因为所有的频率分量出现在信号的每一刻!!!

以如下信号为例:

\( x(t)=cos(2picdot10t)+cos(2picdot25t)+cos(2picdot50t)+cos(2picdot100t) \)

这是个平稳信号,因为任何时刻都包含10,25,50和100Hz的频率。信号的图形如下:

图 1.5

下图为它的傅立叶变换:

图 1.6

图1.6中的上图是图1.5中信号的频谱图,下图为上图的放大,给出了我们关注部分的频率范围。注意四个频率10,25,50和100Hz的频谱分量。

与图1.5中的信号不同,下图所示的就是一个非平稳信号。图1.7中,信号的频率随着时间一直在变化,这种信号称为线性调频信号,是一种非平稳信号。

图 1.7

让我们再看一个例子,图1.8绘出的是一个包含四个频率分量的信号,它们分别在不同时刻出现,因此这是一个非平稳信号。0至300ms时是100Hz的正弦波,300-600ms时则是50Hz的正弦波,600-800ms时是25Hz的正弦波,最后的200ms内是10Hz正弦波。

图 1.8

下图是它的傅立叶变换:

图 1.9

不要介怀图中的那些小波纹,这是由信号中频率突变引起的,在这里并不重要。注意,高频分量的幅值比低频分量大,这是因为高频信号(300ms)比低频信号(200ms)持续时间更长。(频率分量幅值的精确值并不重要)。

除了那些波纹,图中的一切看起来都是正确的。频谱图有四个尖峰,对应原始信号中的四个频率分量,幅值也差不多是合理的…没错

错!

当然了,也不全错,但也不全对。对图1.5中的信号,考虑如下问题:各个频率分量都是在什么时刻出现的?

答案是

在所有时刻!还记得平稳信号吗,所有频率分量在信号的整个持续时间内一直存在。10Hz的频率分量一直存在,50Hz的分量也是,100Hz的分量依然是。

现在,让我们来考虑一下图1.7或1.8中的非平稳信号。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值