multi-layer perceptron

本文提供了一个使用Tensorflow构建的多层感知机的代码实例,介绍了如何设置神经网络参数,包括隐藏层和输出层。文章探讨了Dropout、Adagrad优化器在防止过拟合中的应用,以及ReLU激活函数解决梯度弥散问题。通过隐藏层的引入,模型能够提取高级特征,并在输出层进行组合判断,提升了MNIST手写数字识别的准确性。
摘要由CSDN通过智能技术生成

代码实例:Tensorflow实现多层感知机

神经网络解决过拟合:Dropout
参数调节:Adagrad,Adam,Adadelta
梯度弥散:使用sigmoid在反向传播中会导致梯度值逐渐减小,除输出层之外,其它隐藏层的激活函数可以替换成ReLU,或者它的变种EIU,PReLU,RReLU

前面在MNIST数据集上用SoftMax激活函数实现了一个简单的手写数字识别器,
现在,在前述例子上加上隐藏层,提高神经网络的拟合能力;
将使用解决过拟合问题的Dropout,自适应学习速率的Adagrad,和解决梯度弥散问题的ReLU激活函数

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist=input_data.read_data_sets("MNIST_data",one_hot=True)
sess=tf.InteractiveSession()

设置神经网络的参数:

设置神经网络参数,其中隐藏层的权重W1被初始化为截断的正态分布,因为模型使用的ReLU激活函数,
所以需要给权重加一点噪声来打破完全对称并且避免0梯度 ?????
b1,w2,b2都初始化为0;输出层使用的激活函数是sigmoid,这个激活函数在0附近的梯度最大,变化最快,所以参数先初始化为0

in_units=784
h1_units=300
w1=tf.Variable(tf.truncated_normal([in_units,h1_units],stddev=0.1))
b1=tf
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值