代码实例:Tensorflow实现多层感知机
神经网络解决过拟合:Dropout
参数调节:Adagrad,Adam,Adadelta
梯度弥散:使用sigmoid在反向传播中会导致梯度值逐渐减小,除输出层之外,其它隐藏层的激活函数可以替换成ReLU,或者它的变种EIU,PReLU,RReLU
前面在MNIST数据集上用SoftMax激活函数实现了一个简单的手写数字识别器,
现在,在前述例子上加上隐藏层,提高神经网络的拟合能力;
将使用解决过拟合问题的Dropout,自适应学习速率的Adagrad,和解决梯度弥散问题的ReLU激活函数
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist=input_data.read_data_sets("MNIST_data",one_hot=True)
sess=tf.InteractiveSession()
设置神经网络的参数:
设置神经网络参数,其中隐藏层的权重W1被初始化为截断的正态分布,因为模型使用的ReLU激活函数,
所以需要给权重加一点噪声来打破完全对称并且避免0梯度 ?????
b1,w2,b2都初始化为0;输出层使用的激活函数是sigmoid,这个激活函数在0附近的梯度最大,变化最快,所以参数先初始化为0
in_units=784
h1_units=300
w1=tf.Variable(tf.truncated_normal([in_units,h1_units],stddev=0.1))
b1=tf