用SJ定理解决Anti-SG游戏

Anti-SG游戏定义

1、决策集合为空的操作者胜。
2、其余规则与SG游戏一致。

SJ定理

对于任意一个Anti-SG游戏,如果定义所有子游戏的SG值为0时游戏结束,先手必胜的条件:
1、游戏的SG值为0且所有子游戏SG值均不超过1。
2、游戏的SG值不为0且至少一个子游戏SG值超过1。

证明

先证明第一个条件:
所有都不超过1,那么显然如果有偶数个1则先手必胜偶数个1即游戏的SG值为0。

再证明第二个条件:

如果有至少两个子游戏SG值超过1,然后其余有偶数个1。那么游戏的SG值就为所有SG值超过1的子游戏的SG值的Nim和。设为X。假设X中1的最高位为第k位,那么一定存在至少一个子游戏的SG值第k位有1,设这个子游戏的SG值为Y。那么我们可以把这个子游戏变为 YxorX 。可以知道 YxorX<Y ,因为会消去第k位上的1,k位之后不变,那么相当于减少了一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值