题目描述
有 nnn 个人排成一排,一开始全部面向前方,然后随机朝左或是朝右转。
然后我们不断审查这个队列,每次选择两个面对面的相邻的人,将他们从队列中取出。
例如(> 表示向右,< 表示向左):
队列 >>><<< 的消除过程为,>>><<< 到 >><< 到 >< 到空队列(每次去除一对)。
队列 >><><<<> 的消除过程为,>><><<<> 到 >><<<> 到 ><<> 到 <>(每次去除一对)。
求最后期望能够剩下多少人。
DP
可以把每个人看做左右括号,那么一对匹配括号会被删除。
设f[i,j]表示做到第i个人还有j个左括号的期望,g[i,j]表示概率,转移很简单。
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
typedef double db;
using namespace std;
const int maxn=2000+10;
db f[maxn][maxn],g[maxn][maxn],ans;
int i,j,k,l,t,n,m;
int main(){
scanf("%d",&n);
f[0][0]=0;
g[0][0]=1;
fo(i,0,n-1)
fo(j,0,n){
if (j){
f[i+1][j-1]=(f[i+1][j-1]+f[i][j]/2+g[i][j]);
g[i+1][j-1]=(g[i+1][j-1]+g[i][j]/2);
}
else{
f[i+1][j]=(f[i+1][j]+f[i][j]/2);
g[i+1][j]=(g[i+1][j]+g[i][j]/2);
}
f[i+1][j+1]=(f[i+1][j+1]+f[i][j]/2);
g[i+1][j+1]=(g[i+1][j+1]+g[i][j]/2);
}
fo(i,0,n) ans+=f[n][i];
printf("%.3lf",n-ans);
}