一、定义
置信度边界代表着最有可能类别的置信度与次有可能类别的置信度之间的差异或间隔。它用来衡量分类器对于预测结果的确定性程度。
二、两种可能性(以表情识别举例)
现在有一个分类器,可以对输入的图像进行表情分类。
-
当置信度边界较大时,意味着最有可能类别的置信度远远高于次有可能类别的置信度。
在这种情况下,分类器对于最有可能类别的预测结果非常确定,可以将该结果作为最终的预测输出。因为置信度较大,分类器非常自信地认为该样本属于最有可能的类别。
预测结果是否可取:
预测结果可取。 -
然而,当置信度边界较小时,即最有可能类别的置信度与次有可能类别的置信度接近时,分类器对于预测结果的确定性较低。
在这种情况下,分类器可能面临一定程度的不确定性和困惑,需要更加谨慎地进行决策。较小的置信度边界可能意味着分类器对于该样本的预测结果并不十分可靠,需要进一步的考虑或采取其他策略。
预测结果是否可取:
那么当某幅图片进入表情识别模型处理,分类器处理后,发现该图片的7种表情的置信度都低于置信度边界。 即使有一个表情a的置信度比其他表情高 ,我们也不能说这幅图片的预测结果是表情a。