(人脸属性迁移)STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing

STGAN是针对AttGAN在属性编辑中的问题进行改进的模型,通过Selective Transfer Units(STU)解决了跳跃连接对属性编辑效果的影响。STU在GRU基础上设计,结合属性差异向量,提高了属性生成的精度。损失函数包括重构、对抗性和属性操作损失。在 CelebA 数据集上进行了实验,展示了STGAN在图像属性编辑上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STGAN

文献全称:STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing
文献出处:[C]. computer vision and pattern recognition, 2019: 3673-3682.
数据集:CelebA

论文贡献(亮点)

  • 针对跳跃连接出现的问题做出了改进,引入了STU
  • 使用属性差异向量

实验效果图
在这里插入图片描述
模型框架图
在这里插入图片描述

AttGAN存在的问题

这篇论文是在AttGAN的基础上做的改进。
首先,作者对网络结构中的跳跃连接进行分析,在任意属性编辑的网络结构中,大部分方法都会在编码器和解码器之间建立跳跃连接,因为跳跃连接可以提高生成图像的视觉质量,作者也做了对比实验,如下图所示,从左到右依次是没有跳跃连接、建立一层跳跃连接、二层跳跃连接和UNet对称跳跃连接等网络结构,可以看出跳跃连接对于生成图像的质量具有提升作用
跳跃连接对比实验
尽管如此,但跳跃连接会影响属性编辑的效果,因为跳跃连接是直接将编码器中的feature map与解码器的feature map进行通道串联,属性生成精度实现结果如下图所示,可以看出不采用跳跃连接的模型精度最高。
在这里插入图片描述

主要思想

Selective Transfer Units
面对上述的两难境地,作者提出了STU(Selective Transfer Units),该转换单元是在GRU的基础上提出来的,其中包括重置门 r l r^l rl和更新门 z l z^l zl,同样也是两进两出。
在这里插入图片描述
隐藏码 s ^ l + 1 \hat{s}^{l+1} s^l+1表示为上一层隐藏码与属性差异向量通道并联后,经过反卷积将分辨率提升到上一层的大小,得到本层的输入。
s ^ l + 1 = W t ∗ T [ s l + 1 , a t t d i f f ] \hat{s}^{l+1}=W_t*_{_T}[s^{l+1},att_{_{diff}}] s^l+1=WtT[sl+1,attdiff] 重置门 r l r^l rl和更新门 z l z^l zl则是得到[0,1]区间的矩阵。
r l = σ ( W r ∗ [ f e n c l , s ^ l + 1 ] ) r^l=\sigma(W_r*[f_{_{enc}}^l,\hat{s}^{l+1}]) rl=σ(Wr[fencl,s^l+1]) z l = σ ( W z ∗ [ f e n c l , s ^ l + 1 ] ) z^l=\sigma(W_z*[f_{_{enc}}^l,\hat{s}^{l+1}]) zl=σ(Wz[fencl,s^l+1]) s l = r l ∘ s ^ l + 1 s^l=r_{_l}\circ\hat{s}^{l+1} sl=rls^

### 如何获取 DeepSeek 免费 Token 对于希望获取 DeepSeek 免费 Token 的用户来说,存在多个途径来实现这一目标。 当前有特定时间段内的优惠活动可供利用。例如,在注册 DeepSeek 账户时,新用户可以获得价值10元人民币的免费 Token,这大约等于一千万元的 Token 数量[^1]。此外,针对接入 DeepSeek V3 版本的服务,也有过提供五百万元 Token 的限时优惠直至指定日期结束的通知[^2]。而更进一步地,某些情况下服务商为了表达对客户的感激之情以及促进未来的合作关系,会在一定期限内给予更高额度如五亿 Tokens免费使用权[^4]。 需要注意的是这些优惠政策可能会随时间变化,并且具体条款可能有所调整。因此建议访问官方渠道确认最新的促销信息并按照指引完成相应操作以获得免费资源。 #### 获取步骤概述 虽然这里不使用诸如“首先”这样的引导词,但以下是概括性的描述: - 访问官方网站或应用平台创建账户; - 阅读并同意服务协议及相关政策说明; - 完成身份验证流程(如果必要); - 查看可用的奖励计划详情页了解最新福利措施; - 根据页面提示领取相应的免费 Token 或参与其他形式的激励项目; ```python # 示例代码用于展示如何通过API请求获取Token(假设场景),实际操作需参照官方文档指导。 import requests def get_free_token(api_url, user_info): response = requests.post(api_url, json=user_info) if response.status_code == 200: token_data = response.json() print(f"成功获取到 {token_data['amount']} tokens.") else: print("未能成功获取Token.") user_details = {"email": "example@example.com", "password": "securePassword"} get_free_token("https://api.deepseek.example/token/free", user_details) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值