https://arxiv.org/abs/2407.04121
背景与动机:
大型语言模型(LLMs)在自然语言处理任务中取得了显著成就,但它们生成的文本中存在“幻觉”问题,即生成与输入源不一致或不忠实的内容,这可能导致严重后果。特别是在需要事实准确性的领域,如医学和金融,幻觉的存在严重阻碍了LLMs的应用。因此,检测和减少LLMs中的幻觉是学术界和工业界面临的重要挑战。
研究问题:
本论文提出了一个核心问题:如何在大型语言模型生成的答案中有效地检测和区分幻觉内容?研究旨在开发一种稳健的机制,以识别和评估LLMs生成的答案的可靠性。
实验设置与方法:
为了解决这一问题,作者构建了一个双语问答对话数据集RelQA,并提出了一个名为RelD的稳健鉴别器。RelD在RelQA数据集上接受训练,该数据集包含由LLMs生成的答案和一套全面的评估指标。实验使用了多种自动和人工参与的评估方法,包括准确率(ACC)、ROC曲线分析和AUC值。此外,还进行了消融研究来评估不同组件的有效性,并探索了最优的类别数量和指标权重。
主要发现:<