使用tensorflow实现inception v3

1.inception整体结构

 

1.figure5实现

def inception_1(x,param1,param2,param3,param4):
    # branch1 1*1-3*3-3*3
    branch1 = conv_fn(x,filters=param1[0],kernel_size=(1,1),strides=1)
    branch1 = conv_fn(branch1,filters=param1[1],kernel_size=(3,3),strides=1)
    branch1 = conv_fn(branch1,filters=param1[1],kernel_size=(3,3),strides=1)
    
    # branch2 1*1-3*3
    branch2 = conv_fn(x,filters=param2[0],kernel_size=(1,1),strides=1)
    branch2 = conv_fn(branch2,filters=param2[1],kernel_size=(3,3),strides=1)
    
    # branch3 avg_pool 3*3-1*1
    branch3 = keras.layers.AveragePooling2D(pool_size=(3,3),strides=1,padding="same")(x)
    branch3 = conv_fn(branch3,filters=param3[0],kernel_size=(1,1),strides=1)
    
    # branch4 1*1
    branch4 = conv_fn(x,filters=param4[0],kernel_size=(1,1),strides=1)
    
    return keras.layers.Concatenate(axis=3)([branch1,branch2,branch3,branch4])

2.figure5与figure6中间部分实现

def inception_2(x,param1,param2):
    # branch1 conv 3*3
    branch1 = conv_fn(x,filters=param1[0],kernel_size=(3,3),strides=2,padding="valid")
    
    # branch2 1*1-3*3-3*3
    branch2 = conv_fn(x,filters=param2[0],kernel_size=(1,1),strides=1)
    branch2 = conv_fn(branch2,filters=param2[1],kernel_size=(3,3),strides=1)
    branch2 = conv_fn(branch2,filters=param2[1],kernel_size=(3,3),strides=2,padding="valid")
    
    # branch3 max_pool 3*3 2
    branch3 = keras.layers.MaxPooling2D(pool_size=(3,3),strides=2)(x)
    
    return keras.layers.Concatenate(axis=3)([branch1,branch2,branch3])

3.figure 6实现

 

def inception_3(x,param1,param2,param3,param4):
    # branch1 1*1-1*7-7*1-1*7-7*1
    branch1 = conv_fn(x,filters=param1[0],kernel_size=(1,1),strides=1)
    branch1 = conv_fn(branch1,filters=param1[0],kernel_size=(1,7),strides=1)
    branch1 = conv_fn(branch1,filters=param1[0],kernel_size=(7,1),strides=1)
    branch1 = conv_fn(branch1,filters=param1[0],kernel_size=(1,7),strides=1)
    branch1 = conv_fn(branch1,filters=param1[1],kernel_size=(7,1),strides=1)
    
    # branch2 1*1-1*7-7*1
    branch2 = conv_fn(x,filters=param2[0],kernel_size=(1,1),strides=1)
    branch2 = conv_fn(branch2,filters=param2[0],kernel_size=(1,7),strides=1)
    branch2 = conv_fn(branch2,filters=param2[1],kernel_size=(7,1),strides=1)
    
    # branch3 avg_pool-conv 1*1
    branch3 = keras.layers.AveragePooling2D(pool_size=(3,3),strides=1,padding="same")(x)
    branch3 = conv_fn(branch3,param3[0],kernel_size=(1,1),strides=1)
    
    # branch4
    branch4 = conv_fn(x,param4[0],kernel_size=(1,1),strides=1)
    return keras.layers.Concatenate(axis=3)([branch1,branch2,branch3,branch4])

 4.figure6与figure7连接部分实现

def inception_4(x,param1,param2):
    # branch1 1*1-3*3
    branch1 = conv_fn(x,filters=param1[0],kernel_size=(1,1),strides=1)
    branch1 = conv_fn(branch1,filters=param1[1],kernel_size=(3,3),strides=2,padding='valid')
    
    # branch2 1*1-1*7-7*1-3*3
    branch2 = conv_fn(x,filters=param2[0],kernel_size=(1,1),strides=1)
    branch2 = conv_fn(branch2,filters=param2[0],kernel_size=(1,7),strides=1)
    branch2 = conv_fn(branch2,filters=param2[0],kernel_size=(7,1),strides=1)
    branch2 = conv_fn(branch2,filters=param2[0],kernel_size=(3,3),strides=2,padding='valid')
    
    # branch3 max_pool 3*3
    branch3 = keras.layers.MaxPooling2D(pool_size=(3,3),strides=2)(x)
    return keras.layers.Concatenate(axis=3)([branch1,branch2,branch3])

5.辅助输出部分实现

 

def aux_logit(x,n_classes=1000):
    x = keras.layers.AveragePooling2D(pool_size=(5,5),strides=3)(x)
    x = conv_fn(x,filters=128,kernel_size=(1,1),strides=1)
    x = keras.layers.Flatten()(x)
    x = keras.layers.BatchNormalization()(x)
    aux_output = keras.layers.Dense(n_classes,activation="softmax")(x)
    return aux_output

7.figure7实现

def inception_5(x,param1,param2,param3,param4):
    # branch1 1*1
    branch1 = conv_fn(x,filters=param1[0],kernel_size=(1,1),strides=1)
    
    # branch 1*1-1*3 and 3*1
    branch2 = conv_fn(x,filters=param2[0],kernel_size=(1,1),strides=1)
    branch2_1 = conv_fn(branch2,filters=param2[1],kernel_size=(1,3),strides=1)
    branch2_2 = conv_fn(branch2,filters=param2[1],kernel_size=(3,1),strides=1)
    branch2 = keras.layers.Concatenate(axis=3)([branch2_1,branch2_2])
    
    # branch3 1*1-3*3-1*3 and 3*1
    branch3 = conv_fn(x,filters=param3[0],kernel_size=(1,1),strides=1)
    branch3 = conv_fn(branch3,filters=param3[1],kernel_size=(3,3),strides=1)
    branch3_1 = conv_fn(branch3,filters=param3[1],kernel_size=(3,1),strides=1)
    branch3_2 = conv_fn(branch3,filters=param3[1],kernel_size=(1,3),strides=1)
    branch3 = keras.layers.Concatenate(axis=3)([branch3_1,branch3_2])
    
    # branch avg_pool 3*3 - conv 1*1
    branch4 = keras.layers.AveragePooling2D(pool_size=(3,3),strides=1,padding="same")(x)
    branch4 = conv_fn(branch3,filters=param4[0],kernel_size=(1,1),strides=1)
    
    return keras.layers.Concatenate(axis=3)([branch1,branch2,branch3,branch4])

8、串联整个网络

def incepetion_v3(input_shape,n_classes=1000):
    x_input = keras.layers.Input(shape=input_shape)
    x = conv_fn(x_input,filters=32,kernel_size=(3,3),strides=2,padding="valid")
    x = conv_fn(x,filters=32,kernel_size=(3,3),strides=1,padding="valid")
    x = conv_fn(x,filters=64,kernel_size=(3,3),strides=1)
    x = keras.layers.MaxPooling2D(pool_size=(3,3),strides=2)(x)
    
    x = conv_fn(x,filters=80,kernel_size=(1,1),strides=1,padding="valid")
    x = conv_fn(x,filters=192,kernel_size=(3,3),strides=1,padding="valid")
    x = keras.layers.MaxPooling2D(pool_size=(3,3),strides=2)(x)
    
    # mixed 0: 35 x 35 x 256
    x = inception_1(x,[64,96],[48,64],[32],[64])
    
    #  mixed 1: 35 x 35 x 288
    x = inception_1(x,[64,96],[48,64],[64],[64])
    
    # mixed 2: 35 x 35 x 288
    x = inception_1(x,[64,96],[48,64],[64],[64])    
    
    # mixed 3: 17 x 17 x 768
    x = inception_2(x,[384],[64,96])
    
    # mixed 4: 17 x 17 x 768
    x = inception_3(x,[128,192],[128,192],[192],[192])
    
    # mixed 5, 6: 17 x 17 x 768
    x = inception_3(x,[160,192],[160,192],[192],[192])
    x = inception_3(x,[160,192],[160,192],[192],[192])
    
    # mixed 7: 17 x 17 x 768
    x = inception_3(x,[192,192],[192,192],[192],[192])
    
    # 辅助输出
    aux_out = aux_logit(x,n_classes)
    
    # mixed 8: 8 x 8 x 1280
    x = inception_4(x,[192,320],[192])
    
    # mixed 9、10: 8 x 8 x 2048
    x = inception_5(x,[320],[384,384],[448,384],[192])
    x = inception_5(x,[320],[384,384],[448,384],[192])
    
    # 输出层
    x = keras.layers.GlobalAveragePooling2D()(x)
    output = keras.layers.Dense(n_classes,activation="relu")(x)
    
    model = keras.models.Model(inputs=[x_input],outputs=[aux_out,output])
    return model

9.网络结构概览 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Inception-v3是一个在ImageNet数据集上训练的深度学习模型,用于图像分类任务。在迁移学习中,我们可以利用它在ImageNet上的训练经验来识别其他数据集中的不同种类。 在识别5类花的任务中,我们可以使用PyTorch框架来加载Inception-v3模型,并使用预训练的权重初始化其参数。接着,我们可以通过替换模型的最后一层全连接层,调整模型输出到5个类别,并使用更小的学习率来重新训练模型,以适应新数据集的特征。我们可以用PyTorch自带的预处理方法来对数据进行归一化和增强,以提高模型的性能。 另外,在迁移学习中,我们也可以采用一些技巧,如微调模型,即冻结模型的前几层,只训练后面的一些层,以提高模型的泛化能力。此外,我们可以使用数据增强技术,如旋转、翻转、裁剪等,来扩大训练数据集,从而能够更好地训练深度学习模型,提高模型的准确率和鲁棒性。 综上所述,Inception-v3迁移学习识别5类花的过程,可以通过使用PyTorch框架,加载Inception-v3模型,替换全连接层,重新训练模型,采用微调和数据增强等技巧,以提高模型的性能和泛化能力。 ### 回答2: Inception-v3是一个开源的卷积神经网络模型,以其出色的性能和高效的计算而闻名。迁移学习是将一个已经训练好的模型转移到新任务上的技术。在这个问题中,我们将使用Inception-v3来迁移学习识别五种不同种类的花朵。 首先,我们需要准备数据集。在Pytorch中,我们可以使用ImageFolder类来处理数据集。我们需要将花卉图像集分为五个类别,每个类别都位于不同的文件夹中。然后,我们需要将数据集随机拆分为训练集和验证集。 接下来,我们将载入预先训练好的Inception-v3模型,并用训练集来微调它以适应我们的花卉分类问题。微调包括在数据集上运行一些额外的训练步骤,以使模型适应新的问题。这会导致模型对新数据有更好的表现。 在微调完成后,我们将使用验证集对模型进行评估并计算准确率。我们可以通过改变微调的超参数来进一步改进模型的性能和准确率。 最后,我们可以使用模型对新的花卉图像进行分类。在实际应用中,可以将模型集成到一个应用程序中,用户可以上传花卉图像并得到分类预测。 总的来说,使用Inception-v3迁移学习来解决这个问题是非常有效的。通过微调一个已经训练好的模型,我们可以轻松地解决一个新的分类问题,并且可以获得很高的准确率。 ### 回答3: inception-v3是一种深度学习的模型,能够在图像分类、识别等领域取得较好的效果。而迁移学习则是指将已经训练好的模型用于解决新领域的问题,可以通过微调模型来适应新的数据集。在本题中,我们需要使用inception-v3模型进行迁移学习,训练模型以识别5类花。 首先,我们需要准备一个包含5类花的数据集。这里我们可以使用torchvision中提供的数据集,如ImageFolder。这样,我们就得到了包含训练数据和验证数据的数据集。 接下来,我们需要加载inception-v3模型,并且替换最后一层的全连接层,以适应我们的分类问题。同时,我们可以将前面的层冻结,只对新替换的层进行训练。这样可避免模型重复学习过去的问题而浪费计算资源,同时也可以提高模型训练的速度。 然后,我们就可以对模型进行训练。在训练过程中,我们可以使用交叉熵等损失函数,并且在每个Epoch后对模型进行验证来评估模型的性能。要避免模型过拟合,我们可以对模型进行正则化、数据增强等操作,以提高模型的鲁棒性。 最后,我们就可以使用训练好的模型来进行预测了。给定任意一张花的图片,我们可以使用训练好的模型输出各类别的概率,并选择概率最大的类别作为该图片的预测结果。 综上,inception-v3迁移学习识别5类花pythrch可以分为准备数据、加载模型、替换最后一层、训练模型、预测等步骤,通过这些步骤我们可以得到一个能够识别5种花的深度学习模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值