变分法的应用
- 我们将寻找如下形式泛函的极小化解:
J(y)=∫abL(x,y(x),y′(x)) dx, J(y) = \int_a^b L(x, y(x), y'(x)) \, dx, J(y)=∫abL(x,y(x),y′(x))dx,
该泛函定义在满足边界条件的光滑函数yyy的集合DDD上:
y(a)=α和y(b)=β. y(a) = \alpha \quad \text{和} \quad y(b) = \beta. y(a)=α和y(b)=β.
对于这个问题,可行变分类AAA由在区间端点处为0的光滑函数hhh组成,即
h(a)=h(b)=0. h(a) = h(b) = 0. h(a)=h(b)=0.
理解起来还好吧
为了专注于变分法的主线,不去细究一般的细节定义,我们将假设L,yL, yL,y和hhh足够光滑。为了计算泛函极值,需要采取如下步骤:
a. 对于y∈Dy \in Dy∈D和h∈Ah \in Ah∈A,计算 Gâteaux 变分δJ(y,h)\delta J(y, h)δJ(y,h)。
b. 求解极值方程δJ(y,h)=0\delta J(y, h) = 0δJ(y,h)=0。
c. 在极值中识别极小值。
在微积分中,(c)通常通过二阶导计算完成。变分法中有二阶导数测试,但我们将忽略它,转而利用几何或物理直觉来确定极小值。
- 现在我们准备好进行步骤 (a) 和 (b)。对于给定y∈Dy \in Dy∈D和任意h∈Ah \in Ah∈A,
δJ(y,h)=ddϵJ(y+ϵh)∣ϵ=0=ddϵ∫abL(x,y+ϵh,y′+ϵh′) dx∣ϵ=0=∫ab[Ly(x,y,y′)h+Ly′(x,y,y′)h′] dx. \delta J(y, h) \\ = \left. \frac{d}{d\epsilon} J(y + \epsilon h) \right|_{\epsilon=0}\\ = \left. \frac{d}{d\epsilon} \int_a^b L(x, y + \epsilon h, y' + \epsilon h') \, dx \right|_{\epsilon=0} \\ = \int_a^b [L_y(x, y, y')h + L_{y'}(x, y, y')h'] \, dx. δJ(y,h)=dϵdJ(y+ϵh)ϵ=0=dϵd∫abL(x,y+ϵh,y′+ϵh′)dxϵ=0=∫ab[Ly(x,y,y′)h+Ly′(x,y,y′)h′]dx.
通过分部积分去除h′h'h′上的导数,
δJ(y,h)=∫ab[Ly(x,y,y′)−ddxLy′(x,y,y′)]h dx+Ly′(x,y,y′)h∣ab. \delta J(y, h) = \int_a^b \left[ L_y(x, y, y') - \frac{d}{dx} L_{y'}(x, y, y') \right] h \, dx + L_{y'}(x, y, y')h \bigg|_a^b. δJ(y,h)=∫ab[Ly(x,y,y′)−dxdLy′(x,y,y′)]hdx+Ly′(x,y,y′)hab.
由于 (2) 中的边界项消失,剩下
δJ(y,h)=∫ab[Ly(x,y,y′)−ddxLy′(x,y,y′)]h dx. \delta J(y, h) = \int_a^b \left[ L_y(x, y, y') - \frac{d}{dx} L_{y'}(x, y, y') \right] h \, dx. δJ(y,h)=∫ab[Ly(x,y,y′)−dxdLy′(x,y,y′)]hdx.
因此,如果yyy满足,
Ly(x,y(x),y′(x))−ddxLy′(x,y(x),y′(x))=0, L_y(x, y(x), y'(x)) - \frac{d}{dx} L_{y'}(x, y(x), y'(x)) = 0, Ly(x,y(x),y′(x))−dxdLy′(x,y(x),y′(x))=0,
则对所有可行变分hhh有
δJ(y,h)=0
\delta J(y, h) = 0
δJ(y,h)=0。
如果yyy满足
Ly(x,y(x),y′(x))−ddxLy′(x,y(x),y′(x))=0,
L_y(x, y(x), y'(x)) - \frac{d}{dx} L_{y'}(x, y(x), y'(x)) = 0,
Ly(x,y(x),y′(x))−dxdLy′(x,y(x),y′(x))=0,
称yyy满足欧拉方程.
我们将求解两点边值问题:
{Ly(x,y,y′)−ddxLy′(x,y,y′)=0,对于 a<x<b,y(a)=α,y(b)=β.
\begin{cases}
L_y(x, y, y') - \frac{d}{dx} L_{y'}(x, y, y') = 0, & \text{对于 } a < x < b, \\
y(a) = \alpha, \\
y(b) = \beta.
\end{cases}
⎩⎨⎧Ly(x,y,y′)−dxdLy′(x,y,y′)=0,y(a)=α,y(b)=β.对于 a<x<b,
- 例子两点之间直线最短:考虑上次笔记中定义的弧长泛函JJJ。对于定义域
D={y∈C1[0,1]∣y(0)=0,y(1)=1}, D = \{ y \in C^1[0, 1] \mid y(0) = 0, y(1) = 1 \}, D={y∈C1[0,1]∣y(0)=0,y(1)=1},
我们设
J(y)=∫011+y′(x)2 dx. J(y) = \int_0^1 \sqrt{1 + y'(x)^2} \, dx. J(y)=∫011+y′(x)2dx.
J(y)J(y)J(y)是从 (0, 0) 到 (1, 1) 的光滑曲线y=y(x)y = y(x)y=y(x)的长度。这两点间的最短路径是JJJ的极小化解。这个极小化解应在JJJ的极值中寻找。正如我们刚刚看到的,这些极值点是边值问题的解:
{Ly−ddxLy′=0,y(0)=0,y(1)=1. \begin{cases} L_y - \frac{d}{dx} L_{y'} = 0, \\ y(0) = 0, \\ y(1) = 1. \end{cases} ⎩⎨⎧Ly−dxdLy′=0,y(0)=0,y(1)=1.
拉格朗日函数是
L(y′)=1+y′2, L(y') = \sqrt{1 + y'^2}, L(y′)=1+y′2,
因此欧拉方程为
ddxLy′=ddx(y′(x)1+y′(x)2)=0. \frac{d}{dx} L_{y'} = \frac{d}{dx} \left( \frac{y'(x)}{\sqrt{1 + y'(x)^2}} \right) = 0. dxdLy′=dxd(1+y′(x)2y′(x))=0.
由此可得
y′(x)1+y′(x)2=C, \frac{y'(x)}{\sqrt{1 + y'(x)^2}} = C, 1+y′(x)2y′(x)=C,
对于某个常数CCC。由 (11) 可知y′(x)=Ay'(x) = Ay′(x)=A,其中A2=C21−C2A^2 = \frac{C^2}{1 - C^2}A2=1−C2C2。因此
y(x)=Ax+B, y(x) = Ax + B, y(x)=Ax+B,
对于常数AAA和BBB。根据边界条件,A=1A = 1A=1且B=0B = 0B=0。因此JJJ的唯一极值是y(x)=xy(x) = xy(x)=x。显然,这也是所寻求的极小化解y∗(x)y^*(x)y∗(x)。
- 与拉格朗日函数LLL对应的哈密顿量为
H=−L(x,y,y′)+y′Ly′(x,y,y′). H = -L(x, y, y') + y' L_{y'}(x, y, y'). H=−L(x,y,y′)+y′Ly′(x,y,y′).
- 二阶微分方程F(x,y,y′,y′′)=0F(x, y, y', y'') = 0F(x,y,y′,y′′)=0的一阶积分g(x,y,y′)g(x, y, y')g(x,y,y′)是一个守恒量,即如果yyy满足微分方程,则
g(x,y(x),y′(x))=常数。 g(x, y(x), y'(x)) = \text{常数}。 g(x,y(x),y′(x))=常数。
我们通常可以为欧拉方程写下一阶积分。
a. 如果L=L(y,y′)L = L(y, y')L=L(y,y′),则哈密顿量
H=−L(y,y′)+y′Ly′(y,y′), H = -L(y, y') + y' L_{y'}(y, y'), H=−L(y,y′)+y′Ly′(y,y′),
是欧拉方程的一阶积分。
b. 如果L=L(x,y′)L = L(x, y')L=L(x,y′),则
Ly′(x,y′), L_{y'}(x, y'), Ly′(x,y′),
是一阶积分。
c. 如果L=L(x,y)L = L(x, y)L=L(x,y),则欧拉方程简化为代数方程
Ly(x,y)=0。 L_y(x, y) = 0。 Ly(x,y)=0。
-
示例:(最速降线问题)一个质量为mmm的小球,最初处于静止状态,沿着曲线y=y(x)y = y(x)y=y(x)从(a,α)(a, \alpha)(a,α)滑动到(b,β)(b, \beta)(b,β),其中a<ba < ba<b且α>β\alpha > \betaα>β。作用在小球上的唯一力是重力。我们将使用变分法来找到使小球的传输时间TTT最小化的曲线y∗y^*y∗。设sss是沿着曲线的弧长,SSS是曲线的总长度。则
ds=dx2+dy2=1+y′(x)2dx ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + y'(x)^2} dx ds=dx2+dy2=1+y′(x)2dx
因此,dsdx=1+y′(x)2\frac{ds}{dx} = \sqrt{1 + y'(x)^2}dxds=1+y′(x)2。(12)
设vvv为小球的速度。小球最初处于静止状态。因此,在t=0t = 0t=0时没有动能,总能量等于势能mgαmg\alphamgα。由于能量守恒,12mv2+mgy=mgα\frac{1}{2}mv^2 + mgy = mg\alpha21mv2+mgy=mgα。
因此,
v=dsdt=2g(α−y)1+y′(x)2.(13) v = \frac{ds}{dt} = \sqrt{\frac{2g(\alpha - y)}{1 + y'(x)^2}}. (13) v=dtds=1+y′(x)22g(α−y).(13)
根据(12)和(13),
T=∫0Tdt=∫0Sdtdsds=∫abdtdsdsdxdx=∫ab11+y′(x)22g(α−y(x))1+y′(x)2dx(14) T = \int_0^T dt = \int_0^S \frac{dt}{ds} ds = \int_a^b \frac{dt}{ds} \frac{ds}{dx} dx = \int_a^b \frac{1}{\sqrt{1 + y'(x)^2}} \sqrt{\frac{2g(\alpha - y(x))}{1 + y'(x)^2}} dx (14) T=∫0Tdt=∫0Sdsdtds=∫abdsdtdxdsdx=∫ab1+y′(x)211+y′(x)22g(α−y(x))dx(14)
积分(14)给出了TTT作为yyy的泛函。TTT的极值函数是满足边界条件(2)的欧拉方程的解yyy。拉格朗日量是
L(y,y′)=1+y′22g(α−y) L(y, y') = \frac{\sqrt{1 + y'^2}}{2g(\alpha - y)} L(y,y′)=2g(α−y)1+y′2
哈密顿量是一个第一积分。因此,
H(y,y′)=−1+y′22g(α−y)+y′22g(α−y)=C,(15) H(y, y') = -\frac{\sqrt{1 + y'^2}}{2g(\alpha - y)} + \frac{y'^2}{2g(\alpha - y)} = C, (15) H(y,y′)=−2g(α−y)1+y′2+2g(α−y)y′2=C,(15)
对于常数CCC。将(15)乘以12g(α−y)\frac{1}{\sqrt{2g(\alpha - y)}}2g(α−y)1,将2g2g2g吸收到一个新的常数AAA中,并对得到的方程两边平方,得到1=A2(1+y′2)(α−y)1 = A^2(1 + y'^2)(\alpha - y)1=A2(1+y′2)(α−y)。(16)
因此,yyy满足一阶微分方程
y′=±1−A2(α−y)A2(α−y).(17) y' = \pm \sqrt{\frac{1 - A^2(\alpha - y)}{A^2(\alpha - y)}}. (17) y′=±A2(α−y)1−A2(α−y).(17)
由于小球应该沿着曲线下滑,我们在(17)中取负平方根。接下来,设A2(α−y)=sin2θA^2(\alpha - y) = \sin^2\thetaA2(α−y)=sin2θ,(18)
其中0≤θ≤π/20 \leq \theta \leq \pi/20≤θ≤π/2。从这里,再做一些微积分运算,我们得到
x=1A2(θ−sin2θ)+B,(19) x = \frac{1}{A^2}(\theta - \sin 2\theta) + B, (19) x=A21(θ−sin2θ)+B,(19)
其中BBB是一个常数。(18)和(19)是摆线的参数方程。常数AAA和BBB由边界条件(2)确定。
-
显然,定义在(19)中的函数yyy是TTT的极值函数。我们最后需要证明,就是yyy是一个最小值函数。此略