关于奈奎斯特图的一些解读

如果对 G ( j ω ) H ( j ω ) \large G(j\omega)H(j\omega) G(jω)H(jω)增加一个有限零点(即为传递函数在无穷远处增加一个极点),传递函数的奈奎斯特图会发生一些很有意思的变化,这个变化也是整个奈奎斯特图绘制规则中最难搞的部分,不过即使这样,只要理解的其背后的物理含义,这个变化便很容易,只要用心,你也可以成为奈奎斯特。

为了详细说明这个例子,我们不妨看这样一个传递函数,令

G ( s ) H ( s ) = K s ( T 2 s + 1 ) ( T 1 s + 1 )     f o r   T 2 > T 1 \large G(s)H(s) = \frac{K}{s(T_2s+1)(T_1s+1)}\ \ \ for \ T_2>T_1 G(s)H(s)=s(T2s+1)(T1s+1)K   for T2>T1

其奈奎斯特图很容易可以画出来

奈奎斯特图1

实线表示这个系统的奈奎斯特图,可以看到,在高频情况( ω → ∞ \omega\rightarrow \infin ω)下其输出会滞后输入270°,而且这个270°就是最大的滞后相位,因此奈奎斯特曲线会在第二象限沿着虚轴接近原点。同时也可以看到由于在原点处存在极点,而传递函数的分子为1,不提供任何超前相位,因此奈奎斯特曲线的起点位于第三象限,在一开始相位就滞后了90°。

现在我们来分析添加有限零点的奈奎斯特曲线,由于这个代表零点的一次项可以选取不同的时间常数,因此这个零点对于奈奎斯特曲线的影响也不一样。下面进行逐一分析——增加一个零点 ( T 3 s + 1 ) \large (T_3s+1) (T3s+1),其中

  1. T 3 > T 2 > T 1 ( ω 3 < ω 2 < ω 1 ) T_3 >T_2 >T_1(\omega_3<\omega_2<\omega_1) T3>T2>T1(ω3<ω2<ω1)

    这种情况下零点的时间常数大于两个极点,换言之,就是零点代表的转折频率最小,因此,在低频区零点的相位超前效应会压过两个极点的相位滞后效应,而让奈奎斯特曲线的起点会从第四象限开始,即在低频区能够减少系统相位滞后的程度,使滞后的相位小于90°。从图上来看就是

    奈奎斯特2

    实线表示这种情况下的奈奎斯特曲线

  2. T 3 < T 2 < T 1 ( ω 3 > ω 2 > ω 1 ) T_3 <T_2 <T_1(\omega_3>\omega_2>\omega_1) T3<T2<T1(ω3>ω2>ω1)

这种情况下刚好和上一种相反,由于零点的时间常数最小,因此零点开始作用的转折频率最大,因此在较高频区(频率大于两个极点的转折频率但小于零点的转折频率)时,系统的相位滞后程度会大于180°,从图上则表现为奈奎斯特曲线会进入第二象限。但由于输入频率到大于零点的转折频率时,系统的相位滞后程度会被拉90°回去,因此这种情况下,奈奎斯特曲线会在第三象限沿着实轴接近原点,如图所示
3

虚线为此时的奈奎斯特曲线

  1. T 2 > T 3 > T 1 ( ω 2 < ω 3 < ω 1 ) T_2> T_3> T_1(\omega_2<\omega_3<\omega_1) T2>T3>T1(ω2<ω3<ω1)

此时零点的转折频率位于两个极点的转折频率之间,因此此时的奈奎斯特曲线类似于 G ( s ) H ( s ) = 1 s ( T 1 s + 1 ) \large G(s)H(s) = \frac{1}{s(T_1s+1)} G(s)H(s)=s(T1s+1)1的奈奎斯特曲线,在 ω 1 \large \omega_1 ω1之前的频段, T 2 T_2 T2代表的极点产生的效应会和零点的效应相互抵消,反映到图上就是
4

虚线为此时的奈奎斯特曲线。

  • 19
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值