
动力系统
文章平均质量分 58
sjtuSecondSilly
胶带第二傻
展开
-
线性PDE的解法
通过抓住线性系统的本质,也就是系统的叠加性质,针对非齐次(有输入的系统),则有格林函数法。通过问题的视角转换,时域到频域 也就是 拉普拉斯变换法和傅里叶变换法 没什么好说的。对特定系统形式的求解,把波动方程转化为输运方程 则有达朗贝尔法 也就是行波法。通过对解的形式进行猜测,就是分离变量法 假定解就长这个样子。抓住线性pDE解法的主线。原创 2024-11-12 15:45:32 · 195 阅读 · 0 评论 -
线性PDE的格林函数
md搞得这么故弄玄虚,不就是求系统的冲激响应,一旦知道系统的冲激响应,对于任意输入,卷积一下就可以得到输出了。不同的线性PDE代表不同的机制,因此冲激响应不同,自然格林函数也不同。什么故作高深的名字,不就是线性系统冲激的冲激响应码?因为格林函数和冲激响应根本就是一个东西。我还以为多复杂一东西。原创 2024-11-12 15:22:50 · 112 阅读 · 0 评论 -
PDE的特征线法
那么就可以根据这些权重函数解出特征线,也就是这些权重函数对应的向量场(速度场 phase portrait 反正能理解就行)然后解出特征线后,因为题目已经给定了场的动态在特征线上(或者说沿着特征线)的变化规律,那么就可以解出解了,真是太妙了。一阶pde和一阶微分方程组就这么精巧地联系起来,如果一阶pde的权重函数是nice的函数的化。不知道有没有有缘人能够理解,这真是太妙了。特征线就是phase line。原创 2024-11-02 20:36:21 · 210 阅读 · 1 评论 -
拉普拉斯逆变换
CV 17 陈永平教授关于拉普拉斯逆变换的式子的推导。最后得出拉普拉斯逆变换的表达式。原创 2024-07-06 16:26:02 · 423 阅读 · 0 评论 -
现代控制中可控性的Gramian判据
数学好的人,可能看一眼根据形式就能推出gramian的构造,但对我这种比较钻牛角尖的人,我就想有一个逻辑链条——gramian是怎么被构造出来的?就是说,你假设可控,但这个你构造出来的格拉姆矩阵是奇异的,然后会导致矛盾,具体的就不说了,大家可以自己证明.是任取的,那我们现在就得到了一个充分条件(注意 必要性还得不到)ok,那么你得到了充分性条件,而这个条件的必要性竟然很容易验证。是任意一个n维的向量 我们想找一个条件,让这个等式成立。但这样有一个问题,你从这里的不出任何有用的结果。原创 2024-06-05 21:50:02 · 1486 阅读 · 0 评论 -
Borel-Cantelli 引理
翻译自大佬。原创 2024-05-27 19:19:17 · 1241 阅读 · 0 评论 -
滑模系统的相图
【代码】滑模系统的相图。原创 2024-05-04 12:21:34 · 1136 阅读 · 0 评论 -
多变量函数的求导与求梯度/矩阵求导
注1: 梯度是针对实值函数的, 且其定义是基于Jacobian的, 也就是说现有导数才有梯度. 梯度的定义可以拓展到。这是很显然的结果, 只需要略加思索即可知道这是正确答案.指n阶实对称矩阵, 此处不再赘述.与之相对应, 对于一般的实值函数。这和单变量函数的情形是一致的., 则根据链式法则, 有。易知梯度为一个列向量.易知对于一般的实值函数。是一个行向量, 定义。原创 2024-04-23 21:53:30 · 1197 阅读 · 0 评论 -
二阶系统的迹-行列式平面方法(trace-determinant methods for 2nd order system)
让我们再次考虑二阶线性系统dtdYAY我们已经知道,分析这种二阶系统。最主要的是注意它的特征值情形。(此处没有重根的情形,所有是partial)而特征值,也就是系统矩阵特征方程的根,和而系统矩阵是直接相关的。我们知道,在线性代数理论中,矩阵A的迹Trace(A)(简称Tr)是A的各个特征值之和,而矩阵A的行列式determinant(A)(简称det)为特征值的积。这里我们只考虑二阶系统。原创 2024-02-09 12:40:55 · 1433 阅读 · 1 评论 -
范德波尔方程可视化
Van der Pol方程是一个非线性方程, 对于非线性方程, 我们目前还没有通用的工具分析, 但如果把比例尺放大, 只在平衡点附近观察, 更细致地观看平衡点(0,0)附近, 同时缩小仿真仿真的时间,我们会发现平衡点附近该方程的行为有点像线性系统中的spiral source 也就是二阶线性系统的不稳定焦点。这也给了我们一个启示, 即可以在平衡点附近, 在较小的时间间隔内, 把非线性系统看做线性系统。为了观看长期趋势,将仿真时间定为100s。以下就是系统在平衡点附近的行为。x y坐标缩小到±0.3。原创 2023-07-07 17:07:44 · 1834 阅读 · 0 评论