列紧性推出紧性的证明

参考中科大大佬笔记
http://home.ustc.edu.cn/~xuxuayame/documents/MAB3/Lec8.pdf

这个证明还是比较经典的,要用到两个引理
度量空间上 紧和列紧等价
紧推出列紧一直都是可以的
但度量空间才能满足列紧推出紧

紧和列紧看上去毫不相关,因此紧推列紧主要是反证法 很简单
但列紧推紧用反证法比较困难 因此拆开来证明

引理1 设 ( X , ρ ) (X, \rho) (X,ρ) 是 紧度量空间, η = { G a } \eta = \{G_a\} η={Ga} X X X 上的一个开覆盖,则存在一个覆盖 λ = ( λ ( m ) ) \lambda = (\lambda(m)) λ=(λ(m))(称为覆盖 η \eta η 的 Lebesgue 数)具有性质:如果 A ⊆ X A \subseteq X AX,且直径
d ( A ) = { 0 如果  A = ∅ , sup ⁡ { ρ ( x , y ) ∣ x , y ∈ A } 如果  A ≠ ∅ d(A) = \begin{cases} 0 & \text{如果 } A = \emptyset, \\ \sup\{\rho(x,y) \mid x,y \in A\} & \text{如果 } A \neq \emptyset \end{cases} d(A)={0sup{ρ(x,y)x,yA}如果 A=,如果 A=
小于 λ \lambda λ,则至少有一个 G a ⊃ A , G a ∈ η G_a \supset A, G_a \in \eta GaA,Gaη

证明: 假设相反. 记述性质的 λ \lambda λ 不存在, 则对任何自然数 n n n, 存在 A n ⊆ X A_n \subseteq X AnX, d ( A n ) < 1 n d(A_n) < \frac{1}{n} d(An)<n1, 但对任何 G a ∈ η G_a \in \eta Gaη, A n ⊈ G a A_n \not\subseteq G_a AnGa。取取自然数 n = 1 , 2 , … n = 1, 2, \dots n=1,2,,因为 X X X 紧, 从集合 { A n } \{A_n\} {An} 的子序列 { A n k } \{A_{n_k}\} {Ank} 收敛至点 a ∈ X a \in X aX。由于 η \eta η X X X 的开覆盖,存在 G ∈ η G \in \eta Gη, 使得 a ∈ G a \in G aG。因为 G G G 是开集,所以 d = ρ ( a , X − G ) > 0 d = \rho(a, X - G) > 0 d=ρ(a,XG)>0

我们取自然数 m > d 2 m > \frac{d}{2} m>2d. 有 a m ∈ { a n } , ρ ( a , a m ) < d 2 a_m \in \{a_n\}, \rho(a, a_m) < \frac{d}{2} am{an},ρ(a,am)<2d. 另外,对任何包含 A m A_m Am, 有
ρ ( a , x ) ≤ ρ ( a , a m ) + ρ ( a m , x ) < d 2 + 1 m < d 2 + d 2 = d \rho(a, x) \leq \rho(a, a_m) + \rho(a_m, x) < \frac{d}{2} + \frac{1}{m} < \frac{d}{2} + \frac{d}{2} = d ρ(a,x)ρ(a,am)+ρ(am,x)<2d+m1<2d+2d=d
所以 A m ⊂ G A_m \subset G AmG, 这与 A m ⊄ G a A_m \not\subset G_a AmGa (对任何 G a ∈ η G_a \in \eta Gaη) 矛盾。

引理2(totally bounded). ( X , ρ ) (X, \rho) (X,ρ) 为紧度量空间。对任何 ϵ > 0 \epsilon > 0 ϵ>0, 对每个点 a ∈ X a \in X aX (即 A = X A = X A=X)的所有点,存在某个半径 ϵ \epsilon ϵ 内的点 x ∈ X x \in X xX, 满足 ρ ( x , A ) < ϵ \rho(x, A) < \epsilon ρ(x,A)<ϵ.

证明. 假设存在 ϵ 0 > 0 \epsilon_0 > 0 ϵ0>0, 对 X X X 中的某点 a ∈ X a \in X aX. 假设 { a 1 } ⊄ B ( x 0 , ϵ 0 ) \{a_1\} \not\subset B(x_0, \epsilon_0) {a1}B(x0,ϵ0), 则存在 a 2 ∈ X a_2 \in X a2X, 使得 ρ ( a 1 , a 2 ) ≥ ϵ 0 \rho(a_1, a_2) \geq \epsilon_0 ρ(a1,a2)ϵ0. 以此类推,找到 { a 1 , . . . , a n } \{a_1, ..., a_n\} {a1,...,an} n > 1 n > 1 n>1 且不存在,其中 ρ ( a i , a j ) ≥ ϵ 0 ( 1 ≤ i < j ≤ n ) \rho(a_i, a_j) \geq \epsilon_0 (1 \leq i < j \leq n) ρ(ai,aj)ϵ0(1i<jn)。同时 { a 1 , . . . , a n } \{a_1, ..., a_n\} {a1,...,an} 不是 X X X 的覆盖,则添加 a n + 1 ∈ X a_{n+1} \in X an+1X, 使得 ρ ( a i , a j ) ≥ ϵ 0 ( 1 ≤ i < j ≤ n + 1 ) \rho(a_i, a_j) \geq \epsilon_0 (1 \leq i < j \leq n+1) ρ(ai,aj)ϵ0(1i<jn+1)。由此过程得到一个无限序列 { a 1 , a 2 , . . . , a n , . . . } \{a_1, a_2, ..., a_n, ...\} {a1,a2,...,an,...}, 其中 ρ ( a i , a j ) ≥ ϵ 0 ( 1 ≤ i < j ) \rho(a_i, a_j) \geq \epsilon_0 (1 \leq i < j) ρ(ai,aj)ϵ0(1i<j)。由引理 3.6 可知这无限序列无界,这与 X X X 紧矛盾。

**定理 ** 设 ( X , ρ ) (X, \rho) (X,ρ) 为度量空间,则
X  紧集蕴含  X  可度量紧 . X \text{ 紧集蕴含 } X \text{ 可度量紧}. X 紧集蕴含 X 可度量紧.

证明.

( ⇐ ) (\Leftarrow) (): 设 λ = λ ( n ) \lambda = \lambda(n) λ=λ(n) 是开覆盖 η \eta η 的 Lebesgue 数。由定理引理2 对于每一个 k k k, 有 { a 1 , . . . , a n } \{a_1, ..., a_n\} {a1,...,an}. 并且, X = ⋃ k = 1 n U ( a k , λ 3 ) X = \bigcup_{k=1}^{n} U(a_k, \frac{\lambda}{3}) X=k=1nU(ak,3λ), 因为 ⋃ k = 1 n U ( a k , λ 3 ) < λ \bigcup_{k=1}^{n} U(a_k, \frac{\lambda}{3}) < \lambda k=1nU(ak,3λ)<λ, 从而满足对应的所有要求覆盖。

  • 16
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值