参考中科大大佬笔记
http://home.ustc.edu.cn/~xuxuayame/documents/MAB3/Lec8.pdf
这个证明还是比较经典的,要用到两个引理
度量空间上 紧和列紧等价
紧推出列紧一直都是可以的
但度量空间才能满足列紧推出紧
紧和列紧看上去毫不相关,因此紧推列紧主要是反证法 很简单
但列紧推紧用反证法比较困难 因此拆开来证明
引理1 设 (X,ρ)(X, \rho)(X,ρ) 是 紧度量空间,η={Ga}\eta = \{G_a\}η={Ga} 是 XXX 上的一个开覆盖,则存在一个覆盖 λ=(λ(m))\lambda = (\lambda(m))λ=(λ(m))(称为覆盖 η\etaη 的 Lebesgue 数)具有性质:如果 A⊆XA \subseteq XA⊆X,且直径
d(A)={0如果 A=∅,sup{ρ(x,y)∣x,y∈A}如果 A≠∅
d(A) =
\begin{cases}
0 & \text{如果 } A = \emptyset, \\
\sup\{\rho(x,y) \mid x,y \in A\} & \text{如果 } A \neq \emptyset
\end{cases}
d(A)={0sup{ρ(x,y)∣x,y∈A}如果 A=∅,如果 A=∅
小于 λ\lambdaλ,则至少有一个 Ga⊃A,Ga∈ηG_a \supset A, G_a \in \etaGa⊃A,Ga∈η。
证明: 假设相反. 记述性质的 λ\lambdaλ 不存在, 则对任何自然数 nnn, 存在 An⊆XA_n \subseteq XAn⊆X, d(An)<1nd(A_n) < \frac{1}{n}d(An)<n1, 但对任何 Ga∈ηG_a \in \etaGa∈η, An⊈GaA_n \not\subseteq G_aAn⊆Ga。取取自然数 n=1,2,…n = 1, 2, \dotsn=1,2,…,因为 XXX 紧, 从集合 {An}\{A_n\}{An} 的子序列 {Ank}\{A_{n_k}\}{Ank} 收敛至点 a∈Xa \in Xa∈X。由于 η\etaη 是 XXX 的开覆盖,存在 G∈ηG \in \etaG∈η, 使得 a∈Ga \in Ga∈G。因为 GGG 是开集,所以 d=ρ(a,X−G)>0d = \rho(a, X - G) > 0d=ρ(a,X−G)>0。
我们取自然数 m>d2m > \frac{d}{2}m>2d. 有 am∈{an},ρ(a,am)<d2a_m \in \{a_n\}, \rho(a, a_m) < \frac{d}{2}am∈{an},ρ(a,am)<2d. 另外,对任何包含 AmA_mAm, 有
ρ(a,x)≤ρ(a,am)+ρ(am,x)<d2+1m<d2+d2=d
\rho(a, x) \leq \rho(a, a_m) + \rho(a_m, x) < \frac{d}{2} + \frac{1}{m} < \frac{d}{2} + \frac{d}{2} = d
ρ(a,x)≤ρ(a,am)+ρ(am,x)<2d+m1<2d+2d=d
所以 Am⊂GA_m \subset GAm⊂G, 这与 Am⊄GaA_m \not\subset G_aAm⊂Ga (对任何 Ga∈ηG_a \in \etaGa∈η) 矛盾。
引理2(totally bounded). 设 (X,ρ)(X, \rho)(X,ρ) 为紧度量空间。对任何 ϵ>0\epsilon > 0ϵ>0, 对每个点 a∈Xa \in Xa∈X (即 A=XA = XA=X)的所有点,存在某个半径 ϵ\epsilonϵ 内的点 x∈Xx \in Xx∈X, 满足 ρ(x,A)<ϵ\rho(x, A) < \epsilonρ(x,A)<ϵ.
证明. 假设存在 ϵ0>0\epsilon_0 > 0ϵ0>0, 对 XXX 中的某点 a∈Xa \in Xa∈X. 假设 {a1}⊄B(x0,ϵ0)\{a_1\} \not\subset B(x_0, \epsilon_0){a1}⊂B(x0,ϵ0), 则存在 a2∈Xa_2 \in Xa2∈X, 使得 ρ(a1,a2)≥ϵ0\rho(a_1, a_2) \geq \epsilon_0ρ(a1,a2)≥ϵ0. 以此类推,找到 {a1,...,an}\{a_1, ..., a_n\}{a1,...,an} 且 n>1n > 1n>1 且不存在,其中 ρ(ai,aj)≥ϵ0(1≤i<j≤n)\rho(a_i, a_j) \geq \epsilon_0 (1 \leq i < j \leq n)ρ(ai,aj)≥ϵ0(1≤i<j≤n)。同时 {a1,...,an}\{a_1, ..., a_n\}{a1,...,an} 不是 XXX 的覆盖,则添加 an+1∈Xa_{n+1} \in Xan+1∈X, 使得 ρ(ai,aj)≥ϵ0(1≤i<j≤n+1)\rho(a_i, a_j) \geq \epsilon_0 (1 \leq i < j \leq n+1)ρ(ai,aj)≥ϵ0(1≤i<j≤n+1)。由此过程得到一个无限序列 {a1,a2,...,an,...}\{a_1, a_2, ..., a_n, ...\}{a1,a2,...,an,...}, 其中 ρ(ai,aj)≥ϵ0(1≤i<j)\rho(a_i, a_j) \geq \epsilon_0 (1 \leq i < j)ρ(ai,aj)≥ϵ0(1≤i<j)。由引理 3.6 可知这无限序列无界,这与 XXX 紧矛盾。
**定理 ** 设 (X,ρ)(X, \rho)(X,ρ) 为度量空间,则
X 紧集蕴含 X 可度量紧.
X \text{ 紧集蕴含 } X \text{ 可度量紧}.
X 紧集蕴含 X 可度量紧.
证明.
(⇐)(\Leftarrow)(⇐): 设 λ=λ(n)\lambda = \lambda(n)λ=λ(n) 是开覆盖 η\etaη 的 Lebesgue 数。由定理引理2 对于每一个 kkk, 有 {a1,...,an}\{a_1, ..., a_n\}{a1,...,an}. 并且, X=⋃k=1nU(ak,λ3)X = \bigcup_{k=1}^{n} U(a_k, \frac{\lambda}{3})X=⋃k=1nU(ak,3λ), 因为 ⋃k=1nU(ak,λ3)<λ\bigcup_{k=1}^{n} U(a_k, \frac{\lambda}{3}) < \lambda⋃k=1nU(ak,3λ)<λ, 从而满足对应的所有要求覆盖。
41

被折叠的 条评论
为什么被折叠?



