7-6 列出连通集 (25分)

问题描述

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v​1​​ v​2​​ … v​k​​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

代码实现

#include<bits/stdc++.h>
#define N 10

//为避免传参的麻烦,故定义为全局变量
int graph[N][N];
int visited[N];

void DFS(int n, int v)
{
    printf("%d ", v);
    visited[v] = 1;
    for(int i=0; i<n; ++i) {
        if(graph[v][i] && !visited[i])
            DFS(n, i);
    }
}

void BFS(int n, int v)
{
    int q[N];
    int fron = 0;
    int rear = 0;

    q[rear++] = v;
    visited[v] = 1;
    while(fron < rear) {
        int temp = q[fron++];
        printf("%d ", temp);
        for(int i=0; i<n; ++i)
            if(graph[temp][i] && !visited[i]) {
                q[rear++] = i;
                visited[i] = 1;
            }
    }
}

int main()
{
    int n, e;
    int v1, v2;

    for(int i=0; i<N; ++i) {
        visited[i] = 0;
        for(int j=0; j<N; ++j)
            graph[i][j] = 0;
    }

    scanf("%d%d", &n, &e);
    for(int i=0; i<e; ++i) {
        scanf("%d%d", &v1, &v2);
        graph[v1][v2] = 1;
        graph[v2][v1] = 1;
    }

    //DFS
    for(int i=0; i<n; ++i) {
        if(!visited[i]) {
            printf("{ ");
            DFS(n, i);
            printf("}\n");
        }
    }

    for(int i=0; i<N; ++i)
        visited[i] = 0;
    //BFS
    for(int i=0; i<n; ++i) {
        if(!visited[i]) {
            printf("{ ");
            BFS(n, i);
            printf("}\n");
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值