问题描述
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 … vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
代码实现
#include<bits/stdc++.h>
#define N 10
//为避免传参的麻烦,故定义为全局变量
int graph[N][N];
int visited[N];
void DFS(int n, int v)
{
printf("%d ", v);
visited[v] = 1;
for(int i=0; i<n; ++i) {
if(graph[v][i] && !visited[i])
DFS(n, i);
}
}
void BFS(int n, int v)
{
int q[N];
int fron = 0;
int rear = 0;
q[rear++] = v;
visited[v] = 1;
while(fron < rear) {
int temp = q[fron++];
printf("%d ", temp);
for(int i=0; i<n; ++i)
if(graph[temp][i] && !visited[i]) {
q[rear++] = i;
visited[i] = 1;
}
}
}
int main()
{
int n, e;
int v1, v2;
for(int i=0; i<N; ++i) {
visited[i] = 0;
for(int j=0; j<N; ++j)
graph[i][j] = 0;
}
scanf("%d%d", &n, &e);
for(int i=0; i<e; ++i) {
scanf("%d%d", &v1, &v2);
graph[v1][v2] = 1;
graph[v2][v1] = 1;
}
//DFS
for(int i=0; i<n; ++i) {
if(!visited[i]) {
printf("{ ");
DFS(n, i);
printf("}\n");
}
}
for(int i=0; i<N; ++i)
visited[i] = 0;
//BFS
for(int i=0; i<n; ++i) {
if(!visited[i]) {
printf("{ ");
BFS(n, i);
printf("}\n");
}
}
return 0;
}