P1126 机器人搬重物(BFS)

题目描述

机器人移动学会(RMI)现在正尝试用机器人搬运物品。机器人的形状是一个直径 $1.6 米的球。在试验阶段,机器人被用于在一个储藏室中搬运货物。储藏室是一个 N×MN \times MN×M 的网格,有些格子为不可移动的障碍。机器人的中心总是在格点上,当然,机器人必须在最短的时间内把物品搬运到指定的地方。机器人接受的指令有:向前移动 111 步(Creep);向前移动2步(Walk);向前移动 333 步(Run);向左转(Left);向右转(Right)。每个指令所需要的时间为 111 秒。请你计算一下机器人完成任务所需的最少时间。

输入输出格式

输入格式:

 

第一行为两个正整数 N,M(N,M≤50)N,M(N,M \le 50)N,M(N,M≤50) ,下面 NNN 行是储藏室的构造, 000 表示无障碍, 111 表示有障碍,数字之间用一个空格隔开。接着一行有 444 个整数和 111 个大写字母,分别为起始点和目标点左上角网格的行与列,起始时的面对方向(东 EEE ,南 SSS ,西 WWW ,北 NNN ),数与数,数与字母之间均用一个空格隔开。终点的面向方向是任意的。

 

输出格式:

 

一个整数,表示机器人完成任务所需的最少时间。如果无法到达,输出 −1-1−1 。

 

输入输出样例

输入样例#1: 复制

9 10
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
7 2 2 7 S

输出样例#1: 复制

12

思路:此题带方向还有步数,比较恶心,所以判重的时候要用三维数组判重(带着方向),并且注意!边界的线是不能走的!!

然后常规BFS即可.噢 对了 记得把格子图转换为点图


#include<bits/stdc++.h>
#define MAXN 100000
using namespace std;
typedef long long ll;
ll M[55][55],n,m,a,b,c,d;
char str;
struct Why
{
    ll x,y,num;
    char st;
    Why(ll a,ll b,ll c,char s)
    {
        x=a;
        y=b;
        num=c;
        st=s;
    }
};
bool R[55][55][5];   //判重
ll bfs(ll x1,ll y1,ll x2,ll y2,char s)
{
    queue<Why>A;
    A.push(Why(x1,y1,0,s));
    if(s=='S')
        R[x1][y1][2]=1;
    else if(s=='N')
        R[x1][y1][1]=1;
    else if(s=='W')
        R[x1][y1][3]=1;
    else if(s=='E')
        R[x1][y1][4]=1;
    while(!A.empty())
    {
        Why K=A.front();
        A.pop();
        //cout<<K.x<<" "<<K.y<<" "<<K.num<<" "<<K.st<<endl;
        if(K.x==x2&&K.y==y2)
        {
            cout<<K.num<<endl;
            return 0;
        }
        if(K.st=='E')
        {
            if(R[K.x][K.y][1]==0)      //方向的转变
            {
                A.push(Why(K.x,K.y,K.num+1,'N'));
                R[K.x][K.y][1]=1;
            }
            if(R[K.x][K.y][2]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'S'));
                R[K.x][K.y][2]=1;
            }

            if(R[K.x][K.y+1][4]==0&&K.x>1&&K.x<n&&K.y+1>1&&K.y+1<m&&M[K.x][K.y+1]==0)  //步数的转变
            {
                A.push(Why(K.x,K.y+1,K.num+1,'E'));
                R[K.x][K.y+1][4]=1;
            }
            if(R[K.x][K.y+2][4]==0&&K.x>1&&K.x<n&&K.y+2>1&&K.y+2<m&&M[K.x][K.y+2]==0&&M[K.x][K.y+1]==0)
            {
                A.push(Why(K.x,K.y+2,K.num+1,'E'));
                R[K.x][K.y+2][4]=1;
            }
            if(R[K.x][K.y+3][4]==0&&K.x>1&&K.x<n&&K.y+3>1&&K.y+3<m&&M[K.x][K.y+3]==0&&M[K.x][K.y+2]==0&&M[K.x][K.y+1]==0)
            {
                A.push(Why(K.x,K.y+3,K.num+1,'E'));
                R[K.x][K.y+3][4]=1;
            }
        }
        else if(K.st=='N')
        {
            if(R[K.x][K.y][3]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'W'));
                R[K.x][K.y][3]=1;
            }
            if(R[K.x][K.y][4]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'E'));
                R[K.x][K.y][4]=1;
            }

            if(R[K.x-1][K.y][1]==0&&K.x-1>1&&K.x-1<n&&K.y>1&&K.y<m&&M[K.x-1][K.y]==0)
            {
                A.push(Why(K.x-1,K.y,K.num+1,'N'));
                R[K.x-1][K.y][1]=1;
            }
            if(R[K.x-2][K.y][1]==0&&K.x-2>1&&K.x-2<n&&K.y>1&&K.y<m&&M[K.x-2][K.y]==0&&M[K.x-1][K.y]==0)
            {
                A.push(Why(K.x-2,K.y,K.num+1,'N'));
                R[K.x-2][K.y][1]=1;
            }
            if(R[K.x-3][K.y][1]==0&&K.x-3>1&&K.x-3<n&&K.y>1&&K.y<m&&M[K.x-3][K.y]==0&&M[K.x-2][K.y]==0&&M[K.x-1][K.y]==0)
            {
                A.push(Why(K.x-3,K.y,K.num+1,'N'));
                R[K.x-3][K.y][1]=1;
            }
        }
        else if(K.st=='W')
        {
            if(R[K.x][K.y][2]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'S'));
                R[K.x][K.y][2]=1;
            }
            if(R[K.x][K.y][1]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'N'));
                R[K.x][K.y][1]=1;
            }

            if(R[K.x][K.y-1][3]==0&&K.x>1&&K.x<n&&K.y-1>1&&K.y-1<m&&M[K.x][K.y-1]==0)
            {
                A.push(Why(K.x,K.y-1,K.num+1,'W'));
                R[K.x][K.y-1][3]=1;
            }
            if(R[K.x][K.y-2][3]==0&&K.x>1&&K.x<n&&K.y-2>1&&K.y-2<m&&M[K.x][K.y-2]==0&&M[K.x][K.y-1]==0)
            {
                A.push(Why(K.x,K.y-2,K.num+1,'W'));
                R[K.x][K.y-2][3]=1;
            }
            if(R[K.x][K.y-3][3]==0&&K.x>1&&K.x<n&&K.y-3>1&&K.y-3<m&&M[K.x][K.y-3]==0&&M[K.x][K.y-2]==0&&M[K.x][K.y-1]==0)
            {
                A.push(Why(K.x,K.y-3,K.num+1,'W'));
                R[K.x][K.y-3][3]=1;
            }
        }
        else if(K.st=='S')
        {
            if(R[K.x][K.y][3]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'W'));
                R[K.x][K.y][3]=1;
            }
            if(R[K.x][K.y][4]==0)
            {
                A.push(Why(K.x,K.y,K.num+1,'E'));
                R[K.x][K.y][4]=1;
            }

            if(R[K.x+1][K.y][2]==0&&K.x+1>1&&K.x+1<n&&K.y>1&&K.y<m&&M[K.x+1][K.y]==0)
            {
                A.push(Why(K.x+1,K.y,K.num+1,'S'));
                R[K.x+1][K.y][2]=1;
            }

            if(R[K.x+2][K.y][2]==0&&K.x+2>1&&K.x+2<n&&K.y>1&&K.y<m&&M[K.x+2][K.y]==0&&M[K.x+1][K.y]==0)
            {
                A.push(Why(K.x+2,K.y,K.num+1,'S'));
                R[K.x+2][K.y][2]=1;
            }
            if(R[K.x+3][K.y][2]==0&&K.x+3>1&&K.x+3<n&&K.y>1&&K.y<m&&M[K.x+3][K.y]==0&&M[K.x+2][K.y]==0&&M[K.x+1][K.y]==0)
            {
                A.push(Why(K.x+3,K.y,K.num+1,'S'));
                R[K.x+3][K.y][2]=1;
            }
        }

    }
    cout<<-1<<endl;
    return 0;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
    {
        cin>>a;
        if(a==1)  //转换为点图
        {
            M[i][j]=a;
            M[i+1][j]=a;
            M[i][j+1]=a;
            M[i+1][j+1]=a;
        }
    }
    n++;
    m++;
   // cout<<endl;
   /* for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cout<<M[i][j]<<" ";
        }
        cout<<endl;
    }*/
    cin>>a>>b>>c>>d>>str;
    a++;b++;c++;d++;
    bfs(a,b,c,d,str);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值