图像处理:空白patch过滤(空白图判断)


前言

在进行训练相关任务时,有时会对图像进行裁剪或取patch的操作,进行这种操作后,不可避免的会引入一些空白patch,或内容量很少的图像,这种图像通常会干扰模型的训练,因此最好过滤掉。本文提供了3种方法对图像进行过滤。

一、唯一像素计数

如果一张图像为空,或者信息很少,其像素的种类也很少,可以根据这一特点进行判断。通过将唯一像素计数与阈值比较,我们可以确定空图像。 可以根据阈值来决定过滤的程度。

import numpy as np
import cv2
def is_empty(img):
   # Reading Image
   image = cv2.imread(img, 0)
   np.reshape(image, (-1,1))
   u, count_unique 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值