多模态:CLIP详解


前言

首先为今天还在努力学习的人们献上🎆 。:.゚ヽ(。◕‿◕。)ノ゚.:。+゚

CLIP目前无论在CV领域还是NLP领域都是人尽皆知的,该模型的发布直接带动了整个多模态领域的飞速发展。Open AI提出Contrastive Language-Image Pre-training (CLIP), 突破了文本-图像之间的限制。CLIP使用大规模的文本-图像配对预训练,并且可以直接迁移到Imagenet上,完全不需要图像标签微调即可实现zero-shot分类。

github:https://github.com/openai/CLIP
paper:https://proceedings.mlr.press/v139/radford21a

一、CLIP介绍

常规的图像分类模型往往都基于有类别标签的图像数据集进行全监督训练,例如在Imagenet上训练的Resnet,ViT等。这往往对于数据需求非常高,需要大量人工标注;同时限制了模型的适用性和泛化能力,不适于任务迁移。而通过网络可以轻松获取大批量的文本-图像配对数据。Open AI团队通过收集4亿(400 million)个文本-图像对((image, text) pairs),以用来训练其提出的CLIP模型。
请添加图片描述

二、CLIP模型详解

官方CLIP实例:

import torch
import clip
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device) #首次使用会默认下载clip模型

image = preprocess(Image.open("/data/wangyuxuan/gen_model/CLIP/CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.9927937  0.00421068 0.00299572]]

CLIP模型结构:

CLIP(
  (visual): VisionTransformer(
    (conv1): Conv2d(3, 768, kernel_size=(32, 32), stride=(32, 32), bias=False)
    (ln_pre): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (transformer): Transformer(
      (resblocks): Sequential(
        (0): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (1): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (2): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (3): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (4): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (5): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (6): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (7): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (8): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (9): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (10): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
        (11): ResidualAttentionBlock(
          (attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
          )
          (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          (mlp): Sequential(
            (c_fc): Linear(in_features=768, out_features=3072, bias=True)
            (gelu): QuickGELU()
            (c_proj): Linear(in_features=3072, out_features=768, bias=True)
          )
          (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )
      )
    )
    (ln_post): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
  )
  (transformer): Transformer(
    (resblocks): Sequential(
      (0): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (1): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (2): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (3): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (4): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (5): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (6): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (7): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (8): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (9): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (10): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
      (11): ResidualAttentionBlock(
        (attn): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
        )
        (ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (c_fc): Linear(in_features=512, out_features=2048, bias=True)
          (gelu): QuickGELU()
          (c_proj): Linear(in_features=2048, out_features=512, bias=True)
        )
        (ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      )
    )
  )
  (token_embedding): Embedding(49408, 512)
  (ln_final): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
)

请添加图片描述

模型由两个大部分组成,分别为主管图像vision transformer和主管文本的transformer。两个部分最后都会变成一个长度为512的向量。

Vision transformer: vision transformer的结构很简单,图像首先经过一个patch卷积,然后就是连续的残差注意力结构,模型最后的输出是一个(1, 50, 768) 的张量,最后通过矩阵乘法完成到(1 , 512) 的映射

Transformer: 这部分NLP选手应该很熟悉,CV选手简单了解下,首先文本经过tokenize得到一个新的张量,比如 [“a diagram”, “a dog”, “a cat”] ,经过tokenize得到的(3,77)的张量,经过一个embeding层得到(3,77,512)的tensor,添加位置编码(nn.Parameter)后送入模型,最后模型输出的到(1,512)的特征。

分别获得特征后,将两个特征进行余弦相似度计算,分别获得图像相对文本的相似度矩阵,和文本相对图像的相似度矩阵。两个矩阵数值上是完全相同的,是转置的关系。

    def forward(self, image, text):
        image_features = self.encode_image(image)  #图像特征获取
        text_features = self.encode_text(text)  #文本特征获取

        # normalized features
        # 进行相似度计算时的尺度保持一致
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t() #转置

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text

##################
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()
	
	logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()
    probs_x = logits_per_text.softmax(dim=0).cpu().numpy()

#####
Label probs: [[0.9927   0.004253 0.002968]]
probs_v2 [[0.9927  ]
 [0.004253]
 [0.002968]]

三、CLIP训练过程

请添加图片描述

  1. 假设一个batch包含了 N 个 (文本-图像) 对。将这 N个文本先通过Text Encoder进行文本编码, Text Encoder将每条文本编码为一个长度为 d t d_{t} dt 的一维向量, 那么这个batch的文本数据经Text Encoder的输出为 T 1 , T 2 , ⋯   , T N T_{1}, T_{2}, \cdots, T_{N} T1,T2,,TN; 同样的, 将N个图像先通过Image Encoder进行图像编码, 假设Image Encoder将每个图像编码为一个长度为 d i d_{i} di 的一维向量, 那么这个batch的图像数据经Image Encoder的输出为 I 1 , I 2 , ⋯   , I N I_{1}, I_{2}, \cdots, I_{N} I1,I2,,IN.

  2. 得到两个编码器的特征后, 文本-图像是一一对应的, 例如 T 1 T_{1} T1 I 1 I_{1} I1 对应, 这 N 个对应关系认为正样本; 而原本并不对应的文本-图像我们标记为负样本, 例如 T 1 T_{1} T1 I 2 I_{2} I2 不对应。这么一来, 就有个 N个正样本, N 2 − N N^{2}-N N2N个负样本。这样正负样本就可以作为正负标签, 用来训练 Text Encoder和Image Encoder了。

  3. 通过计算 I i I_{i} Ii T j T_{j} Tj 之间的余弦相似度 (cosine similarity) I i ⋅ T j I_{i} \cdot T_{j} IiTj, 用来度量相应的文本与图像之间的对应关系。余弦相似度越大, 表明对应关系越强。那么训练的任务转为最大化 N 个正样本的余弦相似度, 最小化 N 2 − N N^{2}-N N2N 个负样本的余弦相似度。按上图所示, 最大化对角线中蓝色的数值, 最小化其它非对角线的数值。请添加图片描述
    可以看一个CLIP演示视频:

    CLIP训练过程

论文中的伪代码如下

# 分别提取图像特征和文本特征
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]

# 对两个特征进行线性投射,得到相同维度的特征,并进行l2归一化
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)

# 计算缩放的余弦相似度:[n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# 对称的对比学习损失:等价于N个类别的cross_entropy_loss
labels = np.arange(n) # 对角线元素的labels
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

四、Zero-shot图像分类

训练完成CLIP后,可以直接做图像分类了(所谓的Zero-shot图像分类),原理其实也很简单:
请添加图片描述
根据所迁移的数据集将所有类别转换为文本。例如Imagenet有1000类,就获得1000个文本:A photo of {label}。将这1000个文本全部输入Text Encoder中,得到1000个编码后的向量作为文本特征

将需要分类的单个图像输入Image Encoder中,得到这张图像编码后的向量,将该向量与得到的1000个文本特征分别计算余弦相似度。找出1000个相似度中最大的那一个,即可将其分类为狗。

五、实验结果

请添加图片描述
请添加图片描述

总结

CLIP不仅是一个Zero-shot的图像分类模型,更是打开了图像和文本直接的桥梁,实现了文本-图像的预训练。现在多模态大模型,diffusion生图都有CLIP的身影,其思想实在令人赞叹!!!向OpenAI学习!!!

最后提前祝各位新年快乐啦🎉🎉🎉!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值