整理于论文 On the Challenges of Translating NLP Research into Commercial Products
1 首先确定商业问题是什么:潜在用户是谁,要解决什么问题,定义问题的输入与输出。
2 确定这个问题是否需要用统计方法的NLP:数据量很大,需要自动化,且需要用复杂的规则,更适合机器学习。
3 确认是否有可用的数据:如果没有,是否能用公开数据集代替。如果可预见的时间内拿不到数据,quit。
4 当前对这个问题的 state of the art 是怎样的:模型怎样,输入怎么表示,评价指标是什么。需要两到三年研究的,开一个研究型项目。感觉已经比较成熟了,商业化。