训练时出现的显存错误CUDA error: out of memory

本文介绍了在使用CUDA进行深度学习训练过程中遇到显存溢出错误的两种常见原因及解决方法。一种原因是显存不足,可通过调整超参数或升级硬件解决;另一种原因是显卡资源被其他进程占用,可以通过释放显卡资源来解决。
部署运行你感兴趣的模型镜像

RuntimeError: CUDA error: out of memory

训练时报错:
RuntimeError: CUDA error: out of memory

出现这种错误一般分两种情况:
第一种情况是你的显卡的显存确实不够,解决方法就是改动 bathsize 这些超参数试试,或者氪金买卡;

第二种情况是显卡的性能能满足,但是被其他的进程占用了,所以可分配的显存不足,解决方法就是结束这些占用显卡的进程从而使现存得到释放。具体地:
在Linux中,在终端输入

nvidia-smi

查看占用显存的PID进程号,然后输入

kill -9 -PID

即可释放现存继续训练。

在Windows中,直接打开任务管理器进行查看和结束相应的进程。

您可能感兴趣的与本文相关的镜像

PyTorch 2.7

PyTorch 2.7

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值