1086 Tree Traversals Again

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

Figure 1
Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:
Push 1
Push 2
Push 3
Push 4
Push 5
Push 6
Sample Output:
3 4 2 6 5 1

所以样例的前序遍历是:1 2 3 4 5 6,中序遍历是:3 2 4 1 6 5

using namespace std;
struct node{
    int left;
    int right;
node tree[35];
int index = 0;
int pre[35];
int in[35];
void post(int *pre, int * in, int pBegin, int pEnd, int iBegin, int iEnd){
    if (pBegin == pEnd || iBegin == iEnd){
    int iMid = 0;
    for (int i = iBegin; i < iEnd; i++){
        if (in[i] == pre[pBegin]){
            iMid = i;
    int pMid = iMid - iBegin + pBegin + 1;
    if (pMid > pBegin + 1){
        tree[pBegin].left = pBegin + 1;
        tree[pBegin].left = -1;
    if (pEnd > pMid){
        tree[pBegin].right = pMid;
        tree[pBegin].right = -1;
    post(pre, in, pBegin + 1, pMid, iBegin, iMid);
    post(pre, in, pMid, pEnd, iMid + 1, iEnd);
void postShow(int root){
    if (root == -1){

    if (index == 0){
        printf("%d", pre[root]);
        printf(" %d", pre[root]);

int main(){
    for (int n; scanf("%d", &n) != EOF;){
        int pIndex = 0;
        int iIndex = 0;
        for (int i = 0; i < n * 2; i++){
            char op[6];
            scanf("%s", op);
            if (op[1] == 'u'){
                scanf("%d", &pre[pIndex]);
                in[iIndex] = temp.top();
        index = 0;
        post(pre, in, 0, n, 0, n);
    return 0;

Binary Tree Traversals


Problem DescriptionnA binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.nnIn a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.nnIn an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.nnIn a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.nnNow you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.nn nnInputnThe input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.n nnOutputnFor each test case print a single line specifying the corresponding postorder sequence.n nnSample Inputn9n1 2 4 7 3 5 8 9 6n4 7 2 1 8 5 9 3 6n nnSample Outputn7 4 2 8 9 5 6 3 1n 问答