python数据分析中使用pandas进行预处理 的 标准化数据

本文介绍了三种数据标准化方法:离差标准化将数据映射到[0,1]区间,标准差标准化使数据均值为0,标准差为1,小数定标标准化则将数据缩小并映射到[-1,1]。通过这些方法,可以更好地处理和比较不同尺度或分布的数据,适用于机器学习和数据分析中的特征缩放。
摘要由CSDN通过智能技术生成

标准化数据

1.离差标准化数据(对原始数据的一种线性变换,结果映射到[0,1]区间)

import pandas as pd
import numpy as np
detail=pd.read_csv('../数据分析/detail.csv',encoding='gbk',index_col=0)
def MinMaxScale(data): #自定义离差标准化函数
    data=(data-data.min())/(data.max()-data.min())
    return data
data1=MinMaxScale(detail['counts'])
data2=MinMaxScale(detail['amounts'])
data3=pd.concat([data1,data2],axis=1)
print('离差标准化之前 销量和售价数据为:\n',detail[['counts','amounts']].head())
print('离差标准化之后 销量和售价数据为:\n',data3.head())

离差标准化数据

2.标准差标准化数据(经过该方法处理的数据均值为0,标准差为1)

import pandas as pd
import numpy as np
detail=pd.read_csv('../数据分析/detail.csv',encoding='gbk',index_col=0)
def StandardScaler(d
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Big-Winda

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值