LeetCode:62. Unique Paths

LeetCode:62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

62
Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

就是机器人从左上角走到右下角,每次只能向右或向下走一步,问有多少种走法。

思路:动态规划

很显然,到达右下角的前一步只能是它的上边或者左边那个格子。也就是下面这个图的两个红色方块位置。
last
到达这两个位置的所有路径个数之和就是最终要求的路径个数。按照这种思路往前推,可以得出达到某个位置的路径数为:

A(i,j) = A(i-1,j)+A(i,j-1) ,这里的(i,j)就是某个位置的坐标位置。

另外处理一下特殊情况,在第一行或者第一列的某一格,肯定只能有一种情况到达该位置。

Python 代码实现

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        ans=0
        res={}
        if m==1 or n==1:
            ans=1
        else:
            for i in range(n):
                for j in range(m):
                    if i==0 or j==0:
                    	//第一行或第一列
                        res[(i,j)]=1
                    else:
                        res[(i,j)]=res[(i-1,j)]+res[(i,j-1)]
            ans=res[(n-1,m-1)]
        return ans

THE END.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值