【论文学习】GRAPH ATTENTION NETWORKS

背景

通过在图算法中引入self-attention的机制,解决图卷积中之前的一些问题,并且保证了时间和空间复杂度线性于图的边或者节点。

图注意力网络计算方式

1.图网络每一层的输入和输出都是每个节点的特征向量。
在这里插入图片描述
2.每条边的注意力权重计算
在这里插入图片描述
3.左图是self-attention权重的计算,右图是某个节点multi-head-attention的计算方式,加权多个head之后求平均。
在这里插入图片描述
4.multi-head-attention计算公式。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WitsMakeMen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值