《Graph Attention Networks》——图注意力网络GAT阅读笔记
——本文发表在2018ICLR上,将注意力机制运用到GCN上,使得图神经网络更加完善,达到了state-of-the-art的效果。原文地址: https://arxiv.org/abs/1710.10903
相关背景
CNN在处理格状数据(例如图片)分类任务上得到了很好的效果,但现实中很多数据无法表达为格状数据,例如社会网络、三维网络、生物网络等都是不规则的数据。
GNN的提出为解决任意结构的图状数据提供了很好的思路。GNN迭代地计算图中节点的传播过程直至收敛,再经过一系列神经网络处理可以得到节点的输出结果。
GCN做到了将卷积的思想运用到了GNN上,在网络节点划分任务上取得了很好的效果,但是对节点的特征表示却局限于图的结构,因此对于一个新的图结构我们总是要去训练一个新的模型。同时GCN是基于图的拉普拉斯矩阵来做卷积操作,其中涉及了大量的矩阵运算。
attention机制在基于seq的模型上取得了很好的效果,几乎成为处理seq任务的行业标准。attention输入可以是不同大小的序列数据,self-attetion\intra-attention常用于处理计算单序列表达的任务。
作者由此提出GAT——Graph Attention Networks,一种将attention机制运用到图结构数据节点分类任务的方法。它结合了attention高并行性的特点,并且对于不同度的节点的不同邻居赋予各自的权值,GAT还能泛化与之前没有训练过的图