阿里nlp算法实习记录

这篇博客记录了作者在阿里巴巴NLP算法实习的面试经历,包括电话一面的编程题、模型理论、优化方法、过拟合解决、HMM与CRF的区别、GRU与LSTM的讲解,以及面对数据问题的解决方案。面试中讨论了正则化、数据噪声处理、知识表示模型等话题。
摘要由CSDN通过智能技术生成

开贴记录实习面试,为了以后找工作备用

电话一面: 

在线编程, 求两个有序数组交集, 我写了一个比暴力法强一点的版本,从头遍历A和B,A大B往后移动,B大A往后移动.时间复杂度O(M+N)

他: 如果其中一个数组很长怎么办?

    当时太紧张没答出来.应该是用二分查找

他: variance和bias是什么, 如果这两个东西高了分别代表什么?

我: variance是方差, bias是误差. variance高了代表过拟合, bias高了代表欠拟合.

他:优化方法了解哪些?

我:SGD,牛顿法,最小二乘法

他:说一下momentum?

我:不太了解,但是我的理解可能是梯度,梯度就是更新的方向,学习率就是步长.

他: 过拟合有什么方法解决?

我: 正则化, dropout,early stopping

他: 正则化介绍一下

我: 有L1和L2正则化,比较常用的L2正则化

他:有什么区别?为什么好用?

我: L1正则化是一范数,L2是二范数.在损失后面加正则项一起优化,相当于给参数加了一层限制,也就是所谓的权重衰减,这样可以避免过大和过小的数据对模型影响太大.

他:还可以,能不能说一下隐马尔可夫和条件随机场?

我:HMM是生成模型, 它是对X,Y的联合分布对P(X,Y)建模, 预测时利用P(X, Y)和输入的P(X)反推P(Y | X). CRF是判别模型,直接对P(Y|X)建模

他:你说的是模型上的区别, 能不能从理论上讲一下?

我: HMM是根据马尔科夫假设, 当前状态只和前一个状态有关, 他只考虑前面的.而CRF是在全局范围内的状态转移.

他:GRU和LSTM都知道吧,说一说GRU吧

我:GRU没怎么用过, 能不能说一说LSTM?

他:不行

我:(不知道对不对)GRU和LSTM不同点是他没有LSTM的cell状态, 它的输入通过sigmoid和tanh,巴拉巴拉,全是乱说

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值