目录
实践中模型建立常出现的问题
由于估计多元线性回归参数所使用的最小二乘法建立在一系列假设的前提下,而在实践中,这些假设难以被全部满足,因此在这类情况下,我们就需要改变分析方法。
当实际情况不满足经典假设时,模型建立与估计会出现多重共线性等问题。
估计模型
模型选择错误时——误设定
假设1:
假设2:
不满足时——异方差性
假设3:
不满足时——自相关性
假设4:
假设5:解释变量,
,
,...,
之间不存在严格的线性关系且rank(X)=k+1<n
不满足时——多重共线性
1. 误设定
1.1 函数形式误设定
在实践中,我们应该根据具体情况选择合适的函数形式,除线性模型外,常用模型有双对数模型、半对数模型、双曲函数模型、多项式回归模型等。
函数形式误设定会导致OLS估计量有偏或不一致。
1.2 模型中遗漏有关解释变量
遗漏对因变量有显著影响的解释变量会导致参数估计发生偏倚。
1.3 模型中包括无关解释变量
包含无关解释变量时参数估计仍无偏,但会增大估计量的方差,即增大误差。
1.4 选择解释变量的四个原则
(1)从理论上判断(最重要的判断依据)
(2)t检验:判断该解释变量的系数估计值是否显著
(3):该解释变量加入方程之后
是否变大
(4)偏倚:该解释变量加入方程后,其他变量的系数估计值是否显著变化
1.5 模型的选择
过去相当长一段时间人们都乐意使用逐步回归法来选择模型的解释变量,然而除去这类计算机机械挑选的方法外,还有不少现金较为常用的方法。
我们可以根据具体情况设定几个备选模型,然后从中选择一个。
(1)以上是基于回归的标准误差最小的准则——准则
若 ^=
是第 j 个模型的
估计值,
则对于正确的模型,E(^)=
;对于不正确的模型,E(
^)=
。
因此只需选择^最小的模型即可。
由于最小化