使用Flask将YOLOv5部署为Python接口

77 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Python的Flask框架将YOLOv5目标检测模型部署为API接口。首先,安装相关依赖库,然后下载YOLOv5预训练模型。接着创建Flask应用,定义POST请求路由进行目标检测。最后,运行应用并在本地测试API调用,通过发送图像文件获取目标检测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv5是一种流行的目标检测算法,可以实现实时目标检测和识别。在本文中,我们将讨论如何使用Flask将YOLOv5模型部署为一个Python接口,以便可以通过API调用进行目标检测。

步骤如下:

  1. 安装依赖库

首先,我们需要安装所需的依赖库。在命令行中执行以下命令:

pip install flask
pip install torch torchvision
pip install numpy
  1. 下载YOLOv5模型

我们需要下载YOLOv5的预训练模型。您可以从YOLOv5的官方GitHub存储库中获取模型。请确保将模型文件保存在与您的Python脚本相同的目录中。

  1. 创建Flask应用程序

接下来,我们将创建一个Flask应用程序,用于处理API请求和目标检测。在您选择的编辑器中创建一个新的Python文件,命名为app.py,并添加以下代码:

from flask import Flask, request
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值