BZOJ 3529 莫比乌斯反演 + 离线 + 树状数组动态维护前缀和

题目链接
参考资料 膜PoPoQQQ神犇


题意:令 F ( i ) F(i) F(i)为i的约数和。给定q个询问,每个询问包含n,m,a。
A n s = ∑ x = 1 n ∑ y = 1 m F ( g c d ( x , y ) )   ( F ( g c d ( x , y ) ) &lt; = a ) Ans = \sum_{x=1}^n \sum_{y=1}^m F(gcd(x,y)) \space (F(gcd(x,y))&lt;=a) Ans=x=1ny=1mF(gcd(x,y)) (F(gcd(x,y))<=a)

课件里面讲得很详细,但其中的细节讲解可能对初学者不太友好。
我再简单把思路捋一遍。


首先如果直接双重循环枚举 x , y x,y x,y肯定是超时的,我们可以考虑转化一下:
因为不同的 x , y x,y x,y可能会有多组相同的 g c d gcd gcd,我们可以考虑算出每一组 g c d gcd gcd的个数。
g ( i ) : g c d ( x , y ) = i 的 方 案 数 g(i): gcd(x,y)=i的方案数 g(i)gcd(x,y)=i
则我们可以直接枚举 g c d gcd gcd求转化问题:
A n s = ∑ i = 1 m i n ( n , m ) F ( i ) g ( i )   ( F ( i ) &lt; = a ) Ans = \sum_{i=1}^{min(n,m)}F(i)g(i) \space (F(i) &lt;= a) Ans=i=1min(n,m)F(i)g(i) (F(i)<=a)

对于 F ( i ) F(i) F(i),我们可以在 O ( n l o g n ) O(nlogn) O(nlogn)的复杂度下预处理出来。
而对于 g ( i ) g(i) g(i)的求解,可以考虑莫比乌斯反演。

G ( i ) : g c d ( x , y ) 为 i 的 倍 数 的 方 案 数 G(i):gcd(x,y)为i的倍数的方案数 G(i)gcd(x,y)i
G ( i ) = ∑ i ∣ d g ( d ) = &gt; g ( i ) = ∑ i ∣ d μ ( d i ) G ( d ) = ∑ i ∣ d μ ( d i ) ⌊ n d ⌋ ⌊ m d ⌋ G(i) = \sum_{i|d}g(d) =&gt; g(i)=\sum_{i|d}\mu(\frac{d}{i})G(d) = \sum_{i|d}\mu(\frac{d}{i})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor G(i)=idg(d)=>g(i)=idμ(id)G(d)=idμ(id)dndm

g ( i ) g(i) g(i)代入 A n s Ans Ans表达式:
A n s = ∑ i = 1 m i n ( n , m ) F ( i ) ∑ i ∣ d μ ( d i ) ⌊ n d ⌋ ⌊ m d ⌋   ( F ( i ) &lt; = a ) Ans = \sum_{i=1}^{min(n,m)}F(i)\sum_{i|d}\mu(\frac{d}{i})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor \space (F(i) &lt;= a) Ans=i=1min(n,m)F(i)idμ(id)dndm (F(i)<=a)

因考虑到需要使用分块除法来降低复杂度,故对于 d d d的枚举必须连续,故我们转换第一维的枚举变量:
A n s = ∑ d = 1 m i n ( n , m ) ⌊ n d ⌋ ⌊ m d ⌋   ∑ i ∣ d μ ( d i ) F ( i ) ( F ( i ) &lt; = a ) Ans = \sum_{d=1}^{min(n,m)}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor \space \sum_{i|d}\mu(\frac{d}{i})F(i) (F(i) &lt;= a) Ans=d=1min(n,m)dndm idμ(id)F(i)(F(i)<=a)

此时若没有 a a a的限制,我们可以直接预处理前缀和来快速处理第二个求和式。
但因为存在 a a a,故我们需要离线处理,将询问按 a a a的大小进行排序。

借助树状数组,位置 x x x维护的是
∑ i ∣ x F ( i ) μ ( x i ) \sum_{i|x}F(i)\mu(\frac{x}{i}) ixF(i)μ(ix)

然后就可以分块除法,快速求和了。
总的复杂度是 O ( n l o g 2 n + q n l o g n ) O(nlog^2n + q\sqrt nlogn) O(nlog2n+qn logn)
其中 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n) O ( n ) O(n) O(n)枚举 1 − n 1-n 1n的数, O ( l o g n ) O(logn) O(logn)是枚举倍数, O ( l o g n ) O(logn) O(logn)是树状数组插入操作。
O ( q n l o g n ) O(q\sqrt nlogn) O(qn logn) O ( q ) O(q) O(q)枚举每一个询问, O ( n ) O(\sqrt n) O(n ) 是分块除法, O ( l o g n ) O(logn) O(logn)是树状数组查询操作。

至此,大功告成。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;

const int A = 1e5 + 10;
class Query{
public:
    int n,m,a,id;
    bool operator<(const Query& rhs)const{
        return a < rhs.a;
    }
}Q[A];
bool vis[A];
int pri[A],mu[A],Bit[A],Ans[A],Max,tot;
pair<int,int> F[A];

void init(){
    mu[1] = 1;
    for(int i=2 ;i<=Max ;i++){
        if(vis[i] == 0){pri[++tot] = i;mu[i]=-1;}
        for(int j=1 ;j<=tot&&i*pri[j]<=Max ;j++){
            vis[i*pri[j]] = 1;
            if(i%pri[j] == 0){mu[i*pri[j]] = 0;break;}
            mu[i*pri[j]] = -mu[i];
        }
    }

    for(int i=1 ;i<=Max ;i++){
        F[i].second = i;
        for(int j=i ;j<=Max ;j+=i){
            F[j].first += i;
        }
    }
}

void update(int pos,int val){
    for(int i=pos ;i<A ;i+=i&(-i)) Bit[i] += val;
}

int query(int pos){
    int res = 0;
    for(int i=pos ;i>0 ;i-=i&(-i)) res += Bit[i];
    return res;
}

void solve(int x){
    int n = Q[x].n,m = Q[x].m;
    int ans = 0,last;
    for(int i=1 ;i<=n ;i=last+1){
        last = min(n/(n/i),m/(m/i));
        ans += (n/i)*(m/i)*(query(last) - query(i-1));
    }
    Ans[Q[x].id] = ans;
}

int main(){
    int q;
    scanf("%d",&q);Max = 0;
    for(int i=0 ;i<q ;i++){
        scanf("%d%d%d",&Q[i].n,&Q[i].m,&Q[i].a);
        if(Q[i].n > Q[i].m) swap(Q[i].n,Q[i].m);
        Q[i].id = i;Max = max(Max,Q[i].n);
    }
    sort(Q,Q+q);
    init();
    sort(F+1,F+Max+1);

    int now = 0;
    for(int i=0 ;i<q ;i++){
        while(now+1<=Max && F[now+1].first<=Q[i].a){
            now++;
            for(int j=F[now].second ;j <= Max ;j+=F[now].second){
                update(j,F[now].first*mu[j/F[now].second]);
            }
        }
        solve(i);
    }
    for(int i=0 ;i<q ;i++) printf("%d\n",Ans[i]&0x7fffffff);
    return 0;
}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值