大模型时代的模型运维与部署:LLMops

1 LLMOps介绍

1.1 关联定义

术语 LLMOps 代表大型语言模型运维。它的简短定义是 LLMOps 是 LLM 的 MLOps。这意味着 LLMOps 是一组工具和最佳实践,用于管理 LLM 支持的应用程序的生命周期,包括开发、部署和维护。

  • LLM(大型语言模型)是可以生成人类语言输出的深度学习模型(因此称为语言模型)。这些模型有数十亿个参数,并接受了数十亿个单词的训练(因此被称为大型语言模型)。
  • MLOps(机器学习运维)是一组工具和最佳实践,用于管理 ML 驱动的应用程序的生命周期。

因此,LLMOps 是一组工具和最佳实践,用于管理 LLM 支持的应用程序的生命周期。它可以被视为 MLOps 的子类别,因为 LLM 也是 ML 模型。

1.2 LLMOps 与 MLOps

首先MLOps 包含LLMOps, 但是,MLOps 和 LLMOps 之间的差异是由我们使用经典 ML 模型与 LLM 构建 AI 产品的方式不同造成的。差异主要影响数据管理、实验、评估、成本和延迟。

2 LLMOps实现步骤

在这里插入图片描述

在这里插入图片描述

几个LLMops的步骤:

  • 基础模型的选择
  • 迭代和提示Prompt管理
  • 测试
  • 部署
  • 监控
  • 持续改进和微调

2.1 数据管理

2.1.1 数据清洗和预处理技术

原始数据可能存在噪声和结构混乱,因此在输入LLM之前需要进行清洗和预处理。诸如标记化、小写化和停用词去除等技术可以标准化和简化文本。此外,拼写检查、去重和异常值移除进一步完善数据集,确保LLM的高质量输入。

2.1.2 数据标记和注释

在监督学习任务中,准确和一致的标记数据至关重要。将人类专家参与到注释过程中有助于确保高质量的标记数据。人在循环(human-in-the-loop)方法特别适用于需要专家判断的复杂、领域特定或模糊的案例。Amazon Mechanical Turk等平台可以帮助AI团队快速、经济高效地收集大规模标注数据。这些平台可以将标注任务分配给许多来自不同背景的工作者,提高标注质量和覆盖范围。

2.1.3 数据存储、组织和版本控制

在LLMOps中,有效管理大量数据至关重要。选择合适的数据库和存储解决方案有助于在LLM的整个生命周期中进行数据存储、检索和操作。

版本控制对于管理数据变更和跟踪其演变至关重要。数据版本控制系统允许AI团队跟踪数据集版本,促进协作,确保实验的可重复性。清晰而有组织的数据历史有助于团队高效地迭代他们的LLMs,并随时间提高性能。

2.1.4 数据合规性检验

合规性和法规要求 在处理敏感数据时,合规性和法规要求是不可忽视的。根据不同国家和行业的要求,必须采取适当的安全措施来保护用户数据。例如,欧洲的通用数据保护条例(GDPR)对个人数据的处理有明确的规定,违反规定可能面临严重的罚款。

数据匿名化和去标识化 为了保护用户隐私,必须对数据进行匿名化和去标识化处理。这涉及删除或脱敏个人身份信息,以确保数据无法与特定个体关联。

模型隐私和安全性 确保模型的安全性对于防止未经授权的访问和潜在的攻击非常重要。对模型进行加密、访问控制和审计跟踪是维护模型安全的关键措施。

伦理和公平性 伦理框架和指南 开发和使用LLM应该遵守伦理框架和指南。例如,美国人工智能行业协会(Partnership on AI)提供了《人工智能发展与实施指南》,其中包括对透明度、责任、公平性和隐私的建议。

公平性和偏见管理 LLM的训练数据和模型输出可能存在偏见,这可能会导致不公平的结果。应该采取措施来监测和减轻这些偏见,例如通过数据重新采样、后处理或使用公平性指标进行评估。

2.2 基础模型的选择

开发人员必须根据性能、成本、易用性和灵活性之间的权衡,在两种类型的基础模型之间做出选择:专有模型或开源模型。

在这里插入图片描述

在这里插入图片描述

专有模型是拥有大量专家团队和大量 AI 预算的公司所拥有的闭源基础模型。它们通常比开源模型更大,因此性能更好。它们也是现成的,因此易于使用。

专有模型的主要缺点是它们昂贵的 API(应用程序编程接口)。此外,闭源基础模型为开发人员提供的适应灵活性较低或没有。

专有模型提供商的示例是:

  • OpenAI (GPT-3, GPT-4)
  • AI21 Labs (Jurassic-2)
  • Anthropic (Claude)

开源模型通常在作为社区中心的Hugging Face上进行组织和托管。通常,它们是比专有模型功能更小的模型。但从好的方面来说,它们比专有模型更具成本效益,并为开发人员提供了更大的灵活性。

开源模型的例子是:

  • Stable Diffusion by Stability AI
  • BLOOM by BigScience
  • LLaMA or OPT by Meta AI

其中开源模型需要留意是否商用

2.3 迭代和提示管理

LLM 在生产调查[4]中提到的一个问题是模型准确性和幻觉。 这意味着以您想要的格式从 LLM API 获取输出可能需要一些迭代,而且,如果 LLM 不具备所需的特定知识,他们可能会产生幻觉。为了解决这些问题,您可以通过以下方式使基础模型适应下游任务

  • Prompt Engineering :是一种调整输入以使输出符合您的期望的技术。您可以使用不同的技巧来改进您的 Prompt。一种方法是提供一些预期输出格式的示例。这类似于零样本或少样本学习设置。LangChain或HoneyHive等工具已经出现,可帮助您管理提示模板并对其进行版本控制。
  • 微调预训练模型是 ML 中的一项已知技术。它可以帮助提高模型在特定任务上的性能。虽然,这会增加训练工作量,但可以降低推理成本。LLM API 的成本取决于输入和输出序列长度。因此,减少输入 tokens 的数量会降低 API 成本,因为您不必再​​在提示中提供示例 。
  • 外部数据(External Data):基础模型通常缺乏上下文信息(例如,访问某些特定文档或电子邮件),并且可能很快就会过时(例如,GPT-4在 2021 年 9 月之前接受了数据训练)。因为如果 LLM 没有足够的信息,他们可能会产生幻觉,所以我们需要能够让他们访问相关的外部数据。已经有可用的工具,例如LlamaIndex (GPT Index)、LangChain或DUST,它们可以充当中央接口以将(“链接”)LLM 连接到其他代理和外部数据 。
  • 嵌入(Embeddings):另一种方法是以嵌入的形式从 LLM API 中提取信息(例如,电影摘要或产品描述),并在它们之上构建应用程序(例如,搜索、比较或推荐)。如果np.array不足以存储您的长期记忆嵌入,您可以使用矢量数据库,例如Pinecone、Weaviate或Milvus 。

传统深度学习里对于实验追踪与记录有着非常完善的支持,但目前的 prompt 开发与迭代还在很早期的阶段,主要还是因为不同 prompt 产生的效果并不好自动化评估。

在这里插入图片描述

在这里插入图片描述

因此现阶段比较常见的做法就是通过 git 来管理 prompt 版本。如果有更复杂的需求,例如希望把 prompt 的应用逻辑解耦,或者引入业务人员来优化 prompt,以及通过单独的产品工具来快速评估管理不同的 prompt 甚至模型接口,那么就需要引入更加复杂的产品。这方面可以持续关注之前的 experiment tracking 产品,包括 WandB,MLFlow 等。

2.4 测试+评估

评价的必要性

  • 为确保对模型或提示的更改有效
  • AI 驱动的应用程序的用户保留取决于信任和可靠的输出

评价的难点

  • 训练数据未知:你不知道像 OpenAI 这样的 API 提供商使用的训练数据。
  • 测试和训练数据分布差异大:实际使用的数据分布总是不同于训练数据的分布。
  • 难以用一个核心指标去衡量:指标不那么直接,可能无法捕捉模型的不同行为。语言模型需要对行为和定性输出测量有更多样化的理解。

两个关键要素:测试数据、评价指标:

测试数据构建的建议

  • Start incrementally:从构建产品原型开始就逐步构建测试数据集
  • Use your LLM to help : 通过为您尝试解决的任务创建提示,利用语言模型来帮助生成不同的测试用例
  • Add more data as you roll out :向数据集中添加有趣的示例,重点关注模型遇到困难的困难示例以及数据集中不常见的不同示例;随着模型向更多用户推出,不断向数据集添加数据,同时考虑用户不喜欢和代表性不足的主题以包含在内
  • Toward “test coverage” for AI?:考虑测试覆盖率的概念,目标是评估集涵盖用户将在系统中实际执行的任务类型;测试覆盖率和分布转移是类似的,但衡量数据关系的不同方面;为了有效,测试可靠性应该衡量在线和离线性能之间的差异,确保指标与真实世界的用户体验相关。

指标选择建议

在这里插入图片描述

在这里插入图片描述

通过 LLM 来做评估的具体方法包括:

  • 如果有完全精确的答案判定,可以用传统指标,不需要借助 LLM。
  • 如果你有标准答案,可以测试语义相似度,或者询问 LLM:两个回答是否一致?
  • 如果有上一个版本的回答,可以询问 LLM:哪一个回答更好?
  • 如果有用户填写的反馈信息,可以询问 LLM:用户的反馈是否已经包含在回答中了?
  • 其它情况,可以通过外部工具来检查是否是个合法的格式,或者让 LLM 给回答做个打分。

2.5 部署

部署LLM(语言模型)API可能很简单,但是如果API调用背后有很多逻辑,则会变得更加复杂。 提高LLM输出质量的技术包括自我评价、采样多个输出和集成技术。

2.6 监控

监视LLM涉及查看用户满意度和定义性能指标,例如响应长度或生产中的常见问题。 通过低摩擦方法收集用户反馈,例如向上/向下或简短消息收集用户反馈。 生产中LLMS的常见问题包括UI问题,延迟,错误答案,漫长的答案和迅速的注射攻击。 使用用户反馈通过查找和解决主题或问题来改善提示。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 15
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值