大家好!我发现了一个非常实用的开源项目——Kiln AI。对于像需要本地蒸馏大语言模型进行开发和研究的人来说,Kiln AI 简直就是一款“神器”。
一、多语言模型支持,一站式搞定!
Kiln AI 是一个开源工具,专注于大语言模型的微调、合成数据生成和数据集协作。它提供了直观的桌面应用程序,支持 Windows、MacOS 和 Linux 系统。用户可以通过零代码实现对 Llama、GPT4o 和 Mixtral 等模型的微调,并自动进行无服务器部署。此外,它还支持通过交互式可视化工具生成训练数据,提供基于 Git 的版本控制,方便团队协作处理结构化数据。
二、功能强大,满足多样化需求!
Kiln AI 的功能非常丰富,让我来一一介绍:
1. 零代码微调
- • 支持 Llama、GPT4o 和 Mixtral 等模型的微调,自动无服务器部署。
2. 合成数据生成
- • 通过交互式可视化工具生成训练数据。
3. 团队协作
- • 基于 Git 的版本控制,方便团队成员协作处理数据集。
4. 提示生成
- • 自动从数据中生成提示,包括链式思维、少样本和多样本提示。
5. 广泛的模型和提供商支持
- • 支持 Ollama、OpenAI、OpenRouter、Fireworks、Groq、AWS 等。
6. 开源库和 API
- • 提供 MIT 开源的 Python 库和 OpenAPI REST API。
7. 隐私优先
- • 用户数据完全私密,支持本地运行和自带 API 密钥。
8. 结构化数据支持
- • 构建支持 JSON 的 AI 任务。
9. 免费使用
- • 桌面应用程序免费,开源库开放。
三、使用教程
Kiln AI 的使用非常简单,无需复杂的环境配置。你可以直接下载安装包,安装完成后即可使用。在使用过程中,你可以通过简单的界面操作,快速接入不同的语言模型,并开始对话或文档处理。
1. 安装 Kiln AI
-
• 访问 GitHub - Kiln-AI/Kiln 下载安装包。
-
• 按照提示完成安装。
-
2. 开始使用
-
• 选择你需要的语言模型,开始微调或数据生成。
-
• 利用基于 Git 的版本控制,方便团队协作处理数据集。
-
四、注意事项
1. 语言支持
目前 Kiln AI 主要支持英文界面,对于一些不熟悉英文的用户来说,可能会有一些小障碍。不过,社区正在努力增加更多语言支持,相信不久的将来会有所改善。
互动话题:
你已经使用过 Kiln AI 了吗?你觉得它的哪些功能最实用?欢迎在评论区分享你的使用体验!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓