三步搞定私人AI助手 | LLaMA-3本地部署小白攻略(附教程)

在你的电脑上运行一个强大的AI助手,它不仅能力超群,还把所有秘密都藏在你的硬盘里。好奇这是如何实现的吗?动动手,三分钟就可以完成LLaMA-3的本地部署!

01、LLaMA-3‍‍‍‍

最近在试验检索增强生成(RAG)的项目,想试试换一个强点的模型试试看效果是否有改观,动手试了一下本地搭建一个私有大模型作为基模型,这次试试LLama3,下次搭阿里通义千问的Qwen2模型。

早在4月份,Meta开源了 LLaMA-3(Large Language Model Meta AI 3), 在多个关键的基准测试中性能优于业界先进同类模型,其在代码生成等任务上实现了全面领先,能够进行复杂的推理,可以更遵循指令,能够可视化想法并解决很多微妙的问题。

主要亮点:

  • 基于超过 15T token 训练,相当于 Llama 2 数据集的 7 倍还多;
  • 支持 8K 长文本,改进的 tokenizer 具有 128K token 的词汇量,可实现更好的性能;
  • 在大量重要基准中均具有最先进性能;
  • 新能力范畴,包括增强的推理和代码能力;
  • 带有 Llama Guard 2、Code Shield 和 CyberSec Eval 2 的新版信任和安全工具。

02、安装Ollama‍‍

Ollama 是一款在本地环境中运行和管理大型语言模型(LLMs)的开源工具。它为开发者、研究人员和爱好者提供了一个高效、易用的平台,能够快速实验、管理和部署最新的大语言模型。

技术特点与优势:

  • 本地部署:Ollama 允许用户在本地启动并运行各种大型语言模型,如 Llama 2、CodeLLaMA、Falcon 和 Mistral 等。这不仅降低了使用大语言模型的门槛,还提高了数据隐私和安全性。
  • 丰富的模型库:Ollama 提供了一个预构建的模型库,支持多种流行的大语言模型,包括 Qwen2、Llama3、Phi3 和 Gemma2 等。这些模型可以轻松集成到各种应用程序中,满足不同场景的需求。
  • 易于使用的接口:Ollama 提供了类似于 OpenAI 的 API 接口和聊天界面,方便用户进行模型的部署和使用。此外,它还支持基于命令行的方式运行多种大语言模型,并提供了相应的 Python 和 JS SDK,方便实现 Chatbot UI。
  • 可定制性:Ollama 具有高度的可定制性,允许用户创建和运行自定义的语言模型。
  • 跨平台支持:Ollama 支持 macOS、Linux 和 Windows(预览版),并且可以在使用 Docker 快速部署。这大大增强了其适用性和灵活性。

安装环境:普通的联想台式机,无GPU。安装过程不需要科学上网。‍‍‍‍‍‍‍

在这里插入图片描述

Ollama 官方下载地址:https://ollama.com/download。根据自己的操作系统选择不同的版本。‍‍‍

Github 上也有Docker版本:https://github.com/ollama/ollama。‍

在这里插入图片描述

安装完成,查看版本,验证是否安装成功。‍‍

代码语言:javascript

ollama -v

在这里插入图片描述

03、下载模型

安装完成后可以直接下载内置的诸多开源模型,下面为内置的部分模型名称。‍‍

内存要求:至少8GB可用内存运行7B模型,16GB运行13B模型,32GB运行33B模型。

在这里插入图片描述

下载llama3:8b,冒号前面为模型名称,冒号后面型号,也是模型参数大小。

代码语言:javascript

ollama pull llama3:8b

在这里插入图片描述

运行模型:‍

代码语言:javascript

ollama run llam3

在这里插入图片描述

因为国外模型,默认回答英文,指定模型中文回复即可。‍‍‍‍‍‍‍‍‍

在这里插入图片描述

使用命令行显然很不方便,咱们使用 Docker 给大模型一个对话的 Web界面,使用下面命令启动 Open WebUI,注意修改 open-webui-data后面本地路径。前提:本地先安装好 Docker 服务。

代码语言:javascript

docker run -p 8080:8080 -e OLLAMA_BASE_URL=http://host.docker.internal:11434 --name open-webui --restart always -v open-webui-data:/DATA/ ghcr.io/open-webui/open-webui:main

经过漫长的拉取镜像过程后,显示了启动界面。‍‍‍

在这里插入图片描述

在浏览器地址栏输入 http://127.0.0.1:8080,第一次访问时需要注册用户登录后就可以看到类似Chat-GPT的聊天对话界面,对话之前,在左上角选择咱们刚下载好的llama3:latest。

在这里插入图片描述

通过web界面用中文询问同样的问题,就不需要向命令行交互那样,指定大模型使用中文回答。

在这里插入图片描述

提供对话生成的 API 服务

搭建本地模型目的是为了项目所用,所以我们还需要与 OpenAI 类似的对话生成的 API,使用前先点击设置 - Account,生成一个API Key,就可以用这个 Key 来调用 API了。

命令行的 curl 测试命令:

$ curl -X POST -H “Authorization: Bearer api key” -H “Content-Type: application/json” http://localhost:8080/ollama/api/generate -d ‘{“model”:“llama3-cn:latest”,“stream”:false,“prompt”:“你是谁?你能做什么”}’

对话生成速度略显慢一点,实测时能看到一个字一个字往外蹦,开始回答上面的问题大约需要1~2秒,回答完估计在10秒左右。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

到这里,我们有了一个无需GPU硬件资源,对话内容、文档数据等等都存储在本地,属于我们私有的大模型。‍‍‍‍‍

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,我现在需要帮助用户找到关于SpatialLM-Llama-1B模型本地部署教程。首先,我要回顾用户提供的引用内容,看看是否有相关的信息。用户给出了四个引用,其中引用[1]提到了modelscope下载该模型的命令,引用[3]是0.5B版本的链接,引用[4]提到了部署MASt3R-SLAM的过程,但结果不太理想。 用户的主要需求是寻找SpatialLM-Llama-1B的本地部署教程。根据引用[1],模型可以通过ModelScope下载,但可能没有详细部署步骤。引用[2]提到awesome-LLM-resourses,里面可能有相关资源,但需要具体查看是否有部署教程。引用[4]中的用户尝试部署时遇到了问题,说明可能存在一些挑战或者需要特定的步骤。 接下来,我需要考虑可能的解决方案。首先,建议用户从ModelScope的文档开始,通常平台会提供模型的基本使用指南。然后,检查awesome-LLM-resourses项目是否有相关资源。此外,可能需要参考Hugging Face的文档,因为许多Llama模型基于其生态系统。如果官方资料不足,可能需要社区资源,如GitHub仓库或论坛讨论。 另外,用户提到部署时遇到了问题,可能需要环境配置的具体步骤,比如Python环境、依赖库安装、CUDA版本等。还要注意模型文件是否正确下载,是否有示例代码可供参考。如果用户的环境配置有误,也会导致部署失败,所以需要详细检查这些方面。 总结可能的步骤:1. 使用ModelScope下载模型;2. 安装必要的依赖;3. 参考Hugging Face的文档加载模型;4. 查找社区教程或示例代码;5. 解决部署中的常见问题,如依赖冲突或配置错误。</think>### SpatialLM-Llama-1B 本地部署指南 #### 1. 基础环境准备 - **Python环境**:需配置 Python 3.8+,推荐使用 Anaconda 管理环境 ```bash conda create -n spatiallm python=3.8 conda activate spatiallm ``` - **硬件要求**:至少需要 8GB 显存的 GPU(如 RTX 3070+)和 16GB 内存 - **CUDA版本**:需安装 CUDA 11.7+,可通过 `nvidia-smi` 查看支持的版本 #### 2. 模型获取与依赖安装 - **通过 ModelScope 下载模型**(引用[1]提供的命令): ```bash pip install modelscope from modelscope.hub.snapshot_download import snapshot_download snapshot_download(&#39;manycore-research/SpatialLM-Llama-1B&#39;, cache_dir=&#39;./model&#39;) ``` - **安装核心依赖**: ```bash pip install torch transformers sentencepiece accelerate ``` #### 3. 基础推理代码示例 创建 `inference.py`: ```python from modelscope import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( &#39;manycore-research/SpatialLM-Llama-1B&#39;, device_map=&#39;auto&#39;, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(model.model_dir) input_text = "三维重建的关键步骤是:" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0])) ``` #### 4. 部署注意事项 - **显存优化**:若显存不足可尝试量化(需安装 `bitsandbytes`) ```python model = AutoModelForCausalLM.from_pretrained( ..., load_in_4bit=True, # 启用4bit量化 bnb_4bit_compute_dtype=torch.float16 ) ``` - **空间理解模块**:根据引用[4]的部署经验,需特别注意三维重建模块的依赖: ```bash pip install open3d pykdtree trimesh ``` #### 5. 验证部署效果 可运行以下测试命令验证基础功能: ```bash python -c "from transformers import LlamaTokenizer; print(&#39;成功导入Llama模块&#39;)" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值