matlab实现PCA降维

本文通过具体实例演示了如何使用主成分分析(PCA)将二维数据集降至一维,并通过图表直观展示了原始数据与降维后的数据对比。代码中详细记录了数据预处理、计算协方差矩阵、求解特征向量等关键步骤。
摘要由CSDN通过智能技术生成

利用PCA,把二维数据降为一维数据

load ('ex7data1.mat');
%变成一维
K = 1;
%对数据归一化
means = mean(X);
X_means = bsxfun(@minus, X, means);
sigma = std(X_means);
X_std = bsxfun(@rdivide, X_means, sigma);
%绘制原始数据
scatter(X_std(:,1), X_std(:,2),'ro');
hold on;
[m n] = size(X);
%计算二维到一维的变换矩阵
sigma = 1/m * X_std' * X_std;
U = zeros(n);
%U为特征向量构成的n*n矩阵,S为对角矩阵,对角线上的元素为特征值
[U S D] = svd(sigma);
U_reduce = U(:,1:K);
Z = X_std * U_reduce;
X_rec = Z * U_reduce';
scatter(X_rec(:,1), X_rec(:,2),'bo');
%在原数据和降维后的数据间连线
for i = 1 : m
    plot([X_std(i,1) X_rec(i, 1)], [X_std(i, 2) X_rec(i, 2)], 'k');
end;
[c, cc] = min(X(:,1));
[d, dd] = max(X(:,1));
plot([X_rec(cc,1) X_rec(dd, 1)], [X_rec(cc,2) X_rec(dd, 2)], 'b');
axis([-3 3 -3 3]);

效果图

测试数据

3.381563 3.389113
4.527875 5.854178
2.655682 4.411995
2.765235 3.715414
2.846560 4.175506
3.890672 6.488381
3.475805 3.632849
5.911298 6.680769
3.928894 5.098447
4.561835 5.623299
4.574072 5.397651
4.371734 5.461165
4.191694 4.954694
5.244085 4.661488
2.835840 3.768017
5.635270 6.312114
4.686330 5.665241
2.850513 4.626456
5.110157 7.363197
5.182564 4.646509
5.707328 6.681040
3.579685 4.802781
5.639378 6.120436
4.263469 4.689429
2.536517 3.884491
3.223829 4.942556
4.929488 5.955020
5.792958 5.108393
2.816848 4.818958
3.888824 5.100366
3.343234 5.893013
5.879734 5.521417
3.103919 3.857102
5.331506 4.680742
3.375427 4.565379
4.776679 6.254350
2.675746 3.730970
5.500277 5.679481
1.797097 3.247539
4.322515 5.111105
4.421004 6.025640
3.179299 4.436860
3.033541 3.978793
4.609348 5.879792
2.963789 3.300248
3.971762 5.407737
1.180233 2.878694
1.918950 5.071078
3.955247 4.505327
5.117955 6.085074

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值