利用PCA,把二维数据降为一维数据
load ('ex7data1.mat');
%变成一维
K = 1;
%对数据归一化
means = mean(X);
X_means = bsxfun(@minus, X, means);
sigma = std(X_means);
X_std = bsxfun(@rdivide, X_means, sigma);
%绘制原始数据
scatter(X_std(:,1), X_std(:,2),'ro');
hold on;
[m n] = size(X);
%计算二维到一维的变换矩阵
sigma = 1/m * X_std' * X_std;
U = zeros(n);
%U为特征向量构成的n*n矩阵,S为对角矩阵,对角线上的元素为特征值
[U S D] = svd(sigma);
U_reduce = U(:,1:K);
Z = X_std * U_reduce;
X_rec = Z * U_reduce';
scatter(X_rec(:,1), X_rec(:,2),'bo');
%在原数据和降维后的数据间连线
for i = 1 : m
plot([X_std(i,1) X_rec(i, 1)], [X_std(i, 2) X_rec(i, 2)], 'k');
end;
[c, cc] = min(X(:,1));
[d, dd] = max(X(:,1));
plot([X_rec(cc,1) X_rec(dd, 1)], [X_rec(cc,2) X_rec(dd, 2)], 'b');
axis([-3 3 -3 3]);
效果图

测试数据
3.381563 3.389113
4.527875 5.854178
2.655682 4.411995
2.765235 3.715414
2.846560 4.175506
3.890672 6.488381
3.475805 3.632849
5.911298 6.680769
3.928894 5.098447
4.561835 5.623299
4.574072 5.397651
4.371734 5.461165
4.191694 4.954694
5.244085 4.661488
2.835840 3.768017
5.635270 6.312114
4.686330 5.665241
2.850513 4.626456
5.110157 7.363197
5.182564 4.646509
5.707328 6.681040
3.579685 4.802781
5.639378 6.120436
4.263469 4.689429
2.536517 3.884491
3.223829 4.942556
4.929488 5.955020
5.792958 5.108393
2.816848 4.818958
3.888824 5.100366
3.343234 5.893013
5.879734 5.521417
3.103919 3.857102
5.331506 4.680742
3.375427 4.565379
4.776679 6.254350
2.675746 3.730970
5.500277 5.679481
1.797097 3.247539
4.322515 5.111105
4.421004 6.025640
3.179299 4.436860
3.033541 3.978793
4.609348 5.879792
2.963789 3.300248
3.971762 5.407737
1.180233 2.878694
1.918950 5.071078
3.955247 4.505327
5.117955 6.085074
本文通过具体实例演示了如何使用主成分分析(PCA)将二维数据集降至一维,并通过图表直观展示了原始数据与降维后的数据对比。代码中详细记录了数据预处理、计算协方差矩阵、求解特征向量等关键步骤。
625

被折叠的 条评论
为什么被折叠?



