医学图像配准之形变场可视化 ITK

81 篇文章 ¥59.90 ¥99.00
本文介绍了如何利用ITK在医学图像配准中实现形变场的可视化。通过加载源图像和目标图像,定义配准方法,执行配准并获取形变场,最终用matplotlib展示形变场的伪彩色图像,帮助理解配准过程中的像素位移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

医学图像配准是医学影像处理领域中的一项重要任务,它将来自不同时间或不同模态的医学图像进行对齐,以便进行准确的比较和分析。在医学图像配准的过程中,形变场(deformation field)是一个关键概念,它描述了每个像素在配准过程中的位移信息。

本文将介绍如何使用ITK(Insight Segmentation and Registration Toolkit)来实现医学图像配准中形变场的可视化。

首先,我们需要安装ITK库,可以通过以下命令在Python环境中进行安装:

!pip install itk

接下来,我们导入必要的库:

import itk
import matplotlib.pyplot as plt

接着,我们加载待配准的源图像和目标图像:

source_image 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值