3.28学习整理

本文介绍了C语言中main函数的多种形式,包括返回值和参数处理,以及基本的打印格式、转义字符和编程概念如std输入输出及ASCII字符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、main 函数的多种写法:

1.int main (常见

2.void main(不return0 较古老的写法

3.int main (void) (表示main无参数

二、打印格式

%d 整数 ;%c字符;%f小数(默认后6位数(lf也是);'%s字符串(可以没有);'括字符;“”括字符串;  

三、一些转义字符

\n 换行  

\r 回车(同一行开头

\t 移到下一水平 4/8倍数(用于对齐     \v 垂直

\0 空 无内容 ASCII🐎为0

\xdd dd表示2个十六进制数

\ddd ddd表示1到3个八进制数

\b 退不删 后有内容则顶替 

\a 警告

四、散记

1.std表示standard i表示inptu o表示output

2.关键字:int if return等32个

3.一些常见的ASCII🐎:A~Z:65~90;a~z:97~122;0~9:48~57;\n:1;?:63(0~31不可打印,其余可以)

4.字符串末尾隐藏一个\0(一个字符),为字符串结束的标志,字符串可以存于字符数组中

5.strlen返回值是size-t类型,应用%zd

<think>好的,用户想了解如何配置适合深度学习的电脑硬件和环境搭建,特别是GPU推荐。首先,我需要整理用户提供的三个引用内容,看看有没有可以直接利用的信息。引用1提到了PyTorch的环境配置,包括CPU和GPU版本,还推荐了B站的教程视频。引用2详细说明了如何检查CUDA与显卡的匹配,通过NVIDIA控制面板查看CUDA型号。引用3则是在Ubuntu下配置深度学习环境,提到了更换国内源和系统升级。 接下来,用户的问题主要集中在硬件配置和环境搭建。我需要分步骤来回答:硬件配置、软件环境、GPU选择与驱动安装、框架安装、验证配置,最后生成相关问题。 硬件配置方面,用户可能需要知道CPU、内存、存储、电源和主板的选择。GPU是关键,所以需要重点推荐,比如NVIDIA的RTX 3090、4080等,显存至少8GB,推荐12GB以上。还要提到CUDA核心数量对计算速度的影响。 软件环境部分,操作系统推荐Ubuntu,但Windows也可以。然后要强调CUDA和cuDNN的安装,引用2中提到如何查看CUDA型号,需要确保显卡驱动支持的CUDA版本与框架要求的匹配。安装CUDA和cuDNN的步骤可能需要详细说明,但用户提供的引用中没有详细步骤,可能需要结合一般知识。 框架安装如PyTorch,引用1推荐了教程视频,应该提到使用conda或pip安装,并注意CUDA版本。验证安装部分,需要示例代码检查GPU是否可用,可能引用用户提到的PyTorch代码示例。 环境配置注意事项,引用3提到更换国内源加速下载,系统升级,以及虚拟环境的使用。这些都需要包含在回答中。 最后,生成相关问题需要考虑用户可能的后续需求,比如不同框架的环境差异、云服务选择、硬件不足的替代方案、多GPU配置、环境冲突解决等。 需要确保所有数学表达式用$...$格式,独立公式用$$...$$,但这次回答可能数学公式较少,主要关注代码和配置步骤。检查LaTeX语法是否正确,用中文回答,结构清晰,分点说明,并自然添加引用标识。</think>### 深度学习电脑硬件配置与环境搭建指南 #### 一、硬件配置核心要求 1. **GPU推荐** - **型号选择**:优先选择NVIDIA显卡(因CUDA生态支持完善),如$RTX 3090$、$RTX 4080$或$A100$(专业级)。显存建议至少$8\text{GB}$,复杂模型推荐$12\text{GB}$以上[^1]。 - **算力匹配**:通过`NVIDIA控制面板`查看显卡支持的CUDA版本(如$11.8$),需与深度学习框架要求的CUDA版本一致[^2]。 - **CUDA核心数**:直接影响并行计算速度,例如$RTX 3090$含$10496$个CUDA核心。 2. **其他硬件** - **CPU**:至少$8$核处理器(如Intel i7或AMD Ryzen 7),避免成为数据预处理瓶颈。 - **内存**:$32\text{GB}$起步,大型数据集需$64\text{GB}$。 - **存储**:$1\text{TB}$ NVMe SSD加速数据读写,机械硬盘用于冷数据备份。 - **电源与散热**:GPU功耗较高(如$RTX 4090$需$450\text{W}$),建议$850\text{W}$金牌电源。 #### 二、软件环境搭建步骤 1. **操作系统** - 推荐Ubuntu $20.04/22.04$(对GPU支持更友好)[^3],Windows可通过WSL2兼容。 2. **驱动与CUDA安装** ```bash # Ubuntu示例:安装NVIDIA驱动与CUDA sudo apt install nvidia-driver-535 sudo apt install cuda-11-8 ``` 安装后通过`nvidia-smi`验证驱动状态。 3. **cuDNN与框架集成** - 从NVIDIA官网下载匹配CUDA版本的cuDNN库,解压后复制到CUDA目录: ```bash sudo cp cudnn-linux-x86_64-8.9.3.28_cuda11-archive/include/* /usr/local/cuda-11.8/include/ sudo cp cudnn-linux-x86_64-8.9.3.28_cuda11-archive/lib/* /usr/local/cuda-11.8/lib64/ ``` 4. **深度学习框架安装** PyTorch环境配置示例(使用conda): ```bash conda create -n pytorch_env python=3.9 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 通过代码验证GPU是否可用: ```python import torch print(torch.cuda.is_available()) # 输出应为True ``` #### 三、环境配置注意事项 1. **国内镜像加速**:更换`pip`/`conda`源(如阿里云、清华源)提升依赖下载速度。 2. **系统级隔离**:使用Docker或虚拟环境(如`conda`)避免依赖冲突。 3. **监控工具**:安装`nvtop`或`gpustat`实时监控GPU利用率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值