跨平台物联网漏洞挖掘算法评估框架与实现结题报告 漏洞挖掘方法研究过程 跨漏洞挖掘方法 GMN 总结和不足

2.1 跨漏洞挖掘方法

2.1.2 GMN

2.1.2.3 总结和不足

在GMN实现的过程中,遇到了各种问题。因为Genius提取固件的ida文件时使用的环境是Python2下的pickle模块,而GMN的环境为python3,其pickle模块的方法也有所变化。需要对将Genius下保存ida文件所基于的类对象定义文件也移至GMN的目录下才能正常读取之前保存的ida文件。成功读取之后则使用了跟Gemini同样的方法,提取出GMN所需要的ACFG的特征向量及函数名等信息,将其转化为了json格式的文件以便后续处理。

由于成员设备的性能问题,为了在可接受的时间内训练GMN模型,我们使用了性能远高于个人电脑的远程服务器。配置好服务器运行环境后才成功训练出了效果较好的模型。在服务器上运行十二个小时完成了五十万轮的迭代,最终得到了较好的模型结果。

在图的相似性检测任务下,GMN模型(AUC≈0.95)并没有论文中所说的那样优于Gemini模型(AUC≈0.97)。同时GMN检索时间虽然优于之前的所有方案,但耗时依然较长,这两个问题我们分析是由于GMN模型的神经网络超参数并未设置到最优导致的,对于超参数的优化也是我们后续工作要改进的地方之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值